Metamath Proof Explorer


Theorem dchrisumlem3

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrisum.2 n = x A = B
dchrisum.3 φ M
dchrisum.4 φ n + A
dchrisum.5 φ n + x + M n n x B A
dchrisum.6 φ n + A 0
dchrisum.7 F = n X L n A
dchrisum.9 φ R
dchrisum.10 φ u 0 ..^ N n 0 ..^ u X L n R
Assertion dchrisumlem3 φ t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrisum.2 n = x A = B
10 dchrisum.3 φ M
11 dchrisum.4 φ n + A
12 dchrisum.5 φ n + x + M n n x B A
13 dchrisum.6 φ n + A 0
14 dchrisum.7 F = n X L n A
15 dchrisum.9 φ R
16 dchrisum.10 φ u 0 ..^ N n 0 ..^ u X L n R
17 nnuz = 1
18 1zzd φ 1
19 simpr φ i i
20 7 adantr φ i X D
21 19 nnzd φ i i
22 4 1 5 2 20 21 dchrzrhcl φ i X L i
23 11 ralrimiva φ n + A
24 nnrp i i +
25 nfcsb1v _ n i / n A
26 25 nfel1 n i / n A
27 csbeq1a n = i A = i / n A
28 27 eleq1d n = i A i / n A
29 26 28 rspc i + n + A i / n A
30 29 impcom n + A i + i / n A
31 23 24 30 syl2an φ i i / n A
32 31 recnd φ i i / n A
33 22 32 mulcld φ i X L i i / n A
34 nfcv _ n i
35 nfcv _ n X L i
36 nfcv _ n ×
37 35 36 25 nfov _ n X L i i / n A
38 2fveq3 n = i X L n = X L i
39 38 27 oveq12d n = i X L n A = X L i i / n A
40 34 37 39 14 fvmptf i X L i i / n A F i = X L i i / n A
41 19 33 40 syl2anc φ i F i = X L i i / n A
42 41 33 eqeltrd φ i F i
43 17 18 42 serf φ seq 1 + F :
44 43 ffvelrnda φ k seq 1 + F k
45 11 recnd φ n + A
46 45 ralrimiva φ n + A
47 46 adantr φ e + n + A
48 id e + e +
49 2re 2
50 remulcl 2 R 2 R
51 49 15 50 sylancr φ 2 R
52 lbfzo0 0 0 ..^ N N
53 3 52 sylibr φ 0 0 ..^ N
54 oveq2 u = 0 0 ..^ u = 0 ..^ 0
55 fzo0 0 ..^ 0 =
56 54 55 eqtrdi u = 0 0 ..^ u =
57 56 sumeq1d u = 0 n 0 ..^ u X L n = n X L n
58 sum0 n X L n = 0
59 57 58 eqtrdi u = 0 n 0 ..^ u X L n = 0
60 59 abs00bd u = 0 n 0 ..^ u X L n = 0
61 60 breq1d u = 0 n 0 ..^ u X L n R 0 R
62 61 rspcv 0 0 ..^ N u 0 ..^ N n 0 ..^ u X L n R 0 R
63 53 16 62 sylc φ 0 R
64 0le2 0 2
65 mulge0 2 0 2 R 0 R 0 2 R
66 49 64 65 mpanl12 R 0 R 0 2 R
67 15 63 66 syl2anc φ 0 2 R
68 51 67 ge0p1rpd φ 2 R + 1 +
69 rpdivcl e + 2 R + 1 + e 2 R + 1 +
70 48 68 69 syl2anr φ e + e 2 R + 1 +
71 13 adantr φ e + n + A 0
72 47 70 71 rlimi φ e + m n + m n A 0 < e 2 R + 1
73 simpr φ m m
74 10 nnred φ M
75 74 adantr φ m M
76 73 75 ifcld φ m if M m m M
77 0red φ m 0
78 10 nngt0d φ 0 < M
79 78 adantr φ m 0 < M
80 max1 M m M if M m m M
81 74 80 sylan φ m M if M m m M
82 77 75 76 79 81 ltletrd φ m 0 < if M m m M
83 76 82 elrpd φ m if M m m M +
84 83 adantlr φ e + m if M m m M +
85 nfv n m if M m m M
86 nfcv _ n abs
87 nfcsb1v _ n if M m m M / n A
88 nfcv _ n
89 nfcv _ n 0
90 87 88 89 nfov _ n if M m m M / n A 0
91 86 90 nffv _ n if M m m M / n A 0
92 nfcv _ n <
93 nfcv _ n e 2 R + 1
94 91 92 93 nfbr n if M m m M / n A 0 < e 2 R + 1
95 85 94 nfim n m if M m m M if M m m M / n A 0 < e 2 R + 1
96 breq2 n = if M m m M m n m if M m m M
97 csbeq1a n = if M m m M A = if M m m M / n A
98 97 fvoveq1d n = if M m m M A 0 = if M m m M / n A 0
99 98 breq1d n = if M m m M A 0 < e 2 R + 1 if M m m M / n A 0 < e 2 R + 1
100 96 99 imbi12d n = if M m m M m n A 0 < e 2 R + 1 m if M m m M if M m m M / n A 0 < e 2 R + 1
101 95 100 rspc if M m m M + n + m n A 0 < e 2 R + 1 m if M m m M if M m m M / n A 0 < e 2 R + 1
102 84 101 syl φ e + m n + m n A 0 < e 2 R + 1 m if M m m M if M m m M / n A 0 < e 2 R + 1
103 74 ad2antrr φ e + m M
104 max2 M m m if M m m M
105 103 104 sylancom φ e + m m if M m m M
106 23 ad2antrr φ e + m n + A
107 87 nfel1 n if M m m M / n A
108 97 eleq1d n = if M m m M A if M m m M / n A
109 107 108 rspc if M m m M + n + A if M m m M / n A
110 84 106 109 sylc φ e + m if M m m M / n A
111 110 recnd φ e + m if M m m M / n A
112 111 subid1d φ e + m if M m m M / n A 0 = if M m m M / n A
113 112 fveq2d φ e + m if M m m M / n A 0 = if M m m M / n A
114 76 adantlr φ e + m if M m m M
115 103 80 sylancom φ e + m M if M m m M
116 elicopnf M if M m m M M +∞ if M m m M M if M m m M
117 103 116 syl φ e + m if M m m M M +∞ if M m m M M if M m m M
118 114 115 117 mpbir2and φ e + m if M m m M M +∞
119 3 ad2antrr φ e + m N
120 7 ad2antrr φ e + m X D
121 8 ad2antrr φ e + m X 1 ˙
122 10 ad2antrr φ e + m M
123 11 ad4ant14 φ e + m n + A
124 simpll φ e + m φ
125 124 12 syl3an1 φ e + m n + x + M n n x B A
126 13 ad2antrr φ e + m n + A 0
127 1 2 119 4 5 6 120 121 9 122 123 125 126 14 dchrisumlema φ e + m if M m m M + if M m m M / n A if M m m M M +∞ 0 if M m m M / n A
128 127 simprd φ e + m if M m m M M +∞ 0 if M m m M / n A
129 118 128 mpd φ e + m 0 if M m m M / n A
130 110 129 absidd φ e + m if M m m M / n A = if M m m M / n A
131 113 130 eqtrd φ e + m if M m m M / n A 0 = if M m m M / n A
132 131 breq1d φ e + m if M m m M / n A 0 < e 2 R + 1 if M m m M / n A < e 2 R + 1
133 rpre e + e
134 133 ad2antlr φ e + m e
135 68 ad2antrr φ e + m 2 R + 1 +
136 110 134 135 ltmuldiv2d φ e + m 2 R + 1 if M m m M / n A < e if M m m M / n A < e 2 R + 1
137 132 136 bitr4d φ e + m if M m m M / n A 0 < e 2 R + 1 2 R + 1 if M m m M / n A < e
138 51 ad2antrr φ e + m 2 R
139 135 rpred φ e + m 2 R + 1
140 138 lep1d φ e + m 2 R 2 R + 1
141 138 139 110 129 140 lemul1ad φ e + m 2 R if M m m M / n A 2 R + 1 if M m m M / n A
142 138 110 remulcld φ e + m 2 R if M m m M / n A
143 139 110 remulcld φ e + m 2 R + 1 if M m m M / n A
144 lelttr 2 R if M m m M / n A 2 R + 1 if M m m M / n A e 2 R if M m m M / n A 2 R + 1 if M m m M / n A 2 R + 1 if M m m M / n A < e 2 R if M m m M / n A < e
145 142 143 134 144 syl3anc φ e + m 2 R if M m m M / n A 2 R + 1 if M m m M / n A 2 R + 1 if M m m M / n A < e 2 R if M m m M / n A < e
146 141 145 mpand φ e + m 2 R + 1 if M m m M / n A < e 2 R if M m m M / n A < e
147 137 146 sylbid φ e + m if M m m M / n A 0 < e 2 R + 1 2 R if M m m M / n A < e
148 1red φ m 1
149 10 adantr φ m M
150 149 nnge1d φ m 1 M
151 148 75 76 150 81 letrd φ m 1 if M m m M
152 flge1nn if M m m M 1 if M m m M if M m m M
153 76 151 152 syl2anc φ m if M m m M
154 153 adantlr φ e + m if M m m M
155 3 ad2antrr φ m k if M m m M N
156 7 ad2antrr φ m k if M m m M X D
157 8 ad2antrr φ m k if M m m M X 1 ˙
158 10 ad2antrr φ m k if M m m M M
159 11 ad4ant14 φ m k if M m m M n + A
160 12 3adant1r φ m n + x + M n n x B A
161 160 3adant1r φ m k if M m m M n + x + M n n x B A
162 13 ad2antrr φ m k if M m m M n + A 0
163 15 ad2antrr φ m k if M m m M R
164 16 ad2antrr φ m k if M m m M u 0 ..^ N n 0 ..^ u X L n R
165 83 adantr φ m k if M m m M if M m m M +
166 81 adantr φ m k if M m m M M if M m m M
167 76 adantr φ m k if M m m M if M m m M
168 fllep1 if M m m M if M m m M if M m m M + 1
169 167 168 syl φ m k if M m m M if M m m M if M m m M + 1
170 153 adantr φ m k if M m m M if M m m M
171 simpr φ m k if M m m M k if M m m M
172 1 2 155 4 5 6 156 157 9 158 159 161 162 14 163 164 165 166 169 170 171 dchrisumlem2 φ m k if M m m M seq 1 + F k seq 1 + F if M m m M 2 R if M m m M / n A
173 172 adantllr φ e + m k if M m m M seq 1 + F k seq 1 + F if M m m M 2 R if M m m M / n A
174 43 ad3antrrr φ e + m k if M m m M seq 1 + F :
175 eluznn if M m m M k if M m m M k
176 154 175 sylan φ e + m k if M m m M k
177 174 176 ffvelrnd φ e + m k if M m m M seq 1 + F k
178 154 adantr φ e + m k if M m m M if M m m M
179 174 178 ffvelrnd φ e + m k if M m m M seq 1 + F if M m m M
180 177 179 subcld φ e + m k if M m m M seq 1 + F k seq 1 + F if M m m M
181 180 abscld φ e + m k if M m m M seq 1 + F k seq 1 + F if M m m M
182 142 adantr φ e + m k if M m m M 2 R if M m m M / n A
183 134 adantr φ e + m k if M m m M e
184 lelttr seq 1 + F k seq 1 + F if M m m M 2 R if M m m M / n A e seq 1 + F k seq 1 + F if M m m M 2 R if M m m M / n A 2 R if M m m M / n A < e seq 1 + F k seq 1 + F if M m m M < e
185 181 182 183 184 syl3anc φ e + m k if M m m M seq 1 + F k seq 1 + F if M m m M 2 R if M m m M / n A 2 R if M m m M / n A < e seq 1 + F k seq 1 + F if M m m M < e
186 173 185 mpand φ e + m k if M m m M 2 R if M m m M / n A < e seq 1 + F k seq 1 + F if M m m M < e
187 186 ralrimdva φ e + m 2 R if M m m M / n A < e k if M m m M seq 1 + F k seq 1 + F if M m m M < e
188 fveq2 j = if M m m M j = if M m m M
189 fveq2 j = if M m m M seq 1 + F j = seq 1 + F if M m m M
190 189 oveq2d j = if M m m M seq 1 + F k seq 1 + F j = seq 1 + F k seq 1 + F if M m m M
191 190 fveq2d j = if M m m M seq 1 + F k seq 1 + F j = seq 1 + F k seq 1 + F if M m m M
192 191 breq1d j = if M m m M seq 1 + F k seq 1 + F j < e seq 1 + F k seq 1 + F if M m m M < e
193 188 192 raleqbidv j = if M m m M k j seq 1 + F k seq 1 + F j < e k if M m m M seq 1 + F k seq 1 + F if M m m M < e
194 193 rspcev if M m m M k if M m m M seq 1 + F k seq 1 + F if M m m M < e j k j seq 1 + F k seq 1 + F j < e
195 154 187 194 syl6an φ e + m 2 R if M m m M / n A < e j k j seq 1 + F k seq 1 + F j < e
196 147 195 syld φ e + m if M m m M / n A 0 < e 2 R + 1 j k j seq 1 + F k seq 1 + F j < e
197 105 196 embantd φ e + m m if M m m M if M m m M / n A 0 < e 2 R + 1 j k j seq 1 + F k seq 1 + F j < e
198 102 197 syld φ e + m n + m n A 0 < e 2 R + 1 j k j seq 1 + F k seq 1 + F j < e
199 198 rexlimdva φ e + m n + m n A 0 < e 2 R + 1 j k j seq 1 + F k seq 1 + F j < e
200 72 199 mpd φ e + j k j seq 1 + F k seq 1 + F j < e
201 200 ralrimiva φ e + j k j seq 1 + F k seq 1 + F j < e
202 seqex seq 1 + F V
203 202 a1i φ seq 1 + F V
204 17 44 201 203 caucvg φ seq 1 + F dom
205 202 eldm seq 1 + F dom t seq 1 + F t
206 204 205 sylib φ t seq 1 + F t
207 simpr φ seq 1 + F t seq 1 + F t
208 elrege0 2 R 0 +∞ 2 R 0 2 R
209 51 67 208 sylanbrc φ 2 R 0 +∞
210 209 adantr φ seq 1 + F t 2 R 0 +∞
211 eqid m = m
212 pnfxr +∞ *
213 icossre M +∞ * M +∞
214 74 212 213 sylancl φ M +∞
215 214 sselda φ m M +∞ m
216 215 adantlr φ seq 1 + F t m M +∞ m
217 216 flcld φ seq 1 + F t m M +∞ m
218 simplr φ seq 1 + F t m M +∞ seq 1 + F t
219 43 ad2antrr φ seq 1 + F t m M +∞ seq 1 + F :
220 1red φ seq 1 + F t m M +∞ 1
221 74 ad2antrr φ seq 1 + F t m M +∞ M
222 10 ad2antrr φ seq 1 + F t m M +∞ M
223 222 nnge1d φ seq 1 + F t m M +∞ 1 M
224 elicopnf M m M +∞ m M m
225 74 224 syl φ m M +∞ m M m
226 225 simplbda φ m M +∞ M m
227 226 adantlr φ seq 1 + F t m M +∞ M m
228 220 221 216 223 227 letrd φ seq 1 + F t m M +∞ 1 m
229 flge1nn m 1 m m
230 216 228 229 syl2anc φ seq 1 + F t m M +∞ m
231 219 230 ffvelrnd φ seq 1 + F t m M +∞ seq 1 + F m
232 nnex V
233 232 mptex k seq 1 + F m seq 1 + F k V
234 233 a1i φ seq 1 + F t m M +∞ k seq 1 + F m seq 1 + F k V
235 219 adantr φ seq 1 + F t m M +∞ i m seq 1 + F :
236 eluznn m i m i
237 230 236 sylan φ seq 1 + F t m M +∞ i m i
238 235 237 ffvelrnd φ seq 1 + F t m M +∞ i m seq 1 + F i
239 fveq2 k = i seq 1 + F k = seq 1 + F i
240 239 oveq2d k = i seq 1 + F m seq 1 + F k = seq 1 + F m seq 1 + F i
241 eqid k seq 1 + F m seq 1 + F k = k seq 1 + F m seq 1 + F k
242 ovex seq 1 + F m seq 1 + F k V
243 240 241 242 fvmpt3i i k seq 1 + F m seq 1 + F k i = seq 1 + F m seq 1 + F i
244 237 243 syl φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i = seq 1 + F m seq 1 + F i
245 211 217 218 231 234 238 244 climsubc2 φ seq 1 + F t m M +∞ k seq 1 + F m seq 1 + F k seq 1 + F m t
246 232 mptex k seq 1 + F m seq 1 + F k V
247 246 a1i φ seq 1 + F t m M +∞ k seq 1 + F m seq 1 + F k V
248 fvex seq 1 + F m V
249 248 fvconst2 i × seq 1 + F m i = seq 1 + F m
250 237 249 syl φ seq 1 + F t m M +∞ i m × seq 1 + F m i = seq 1 + F m
251 250 oveq1d φ seq 1 + F t m M +∞ i m × seq 1 + F m i seq 1 + F i = seq 1 + F m seq 1 + F i
252 244 251 eqtr4d φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i = × seq 1 + F m i seq 1 + F i
253 231 adantr φ seq 1 + F t m M +∞ i m seq 1 + F m
254 250 253 eqeltrd φ seq 1 + F t m M +∞ i m × seq 1 + F m i
255 254 238 subcld φ seq 1 + F t m M +∞ i m × seq 1 + F m i seq 1 + F i
256 252 255 eqeltrd φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i
257 240 fveq2d k = i seq 1 + F m seq 1 + F k = seq 1 + F m seq 1 + F i
258 eqid k seq 1 + F m seq 1 + F k = k seq 1 + F m seq 1 + F k
259 fvex seq 1 + F m seq 1 + F k V
260 257 258 259 fvmpt3i i k seq 1 + F m seq 1 + F k i = seq 1 + F m seq 1 + F i
261 237 260 syl φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i = seq 1 + F m seq 1 + F i
262 244 fveq2d φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i = seq 1 + F m seq 1 + F i
263 261 262 eqtr4d φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i = k seq 1 + F m seq 1 + F k i
264 211 245 247 217 256 263 climabs φ seq 1 + F t m M +∞ k seq 1 + F m seq 1 + F k seq 1 + F m t
265 51 ad2antrr φ seq 1 + F t m M +∞ 2 R
266 0red φ m M +∞ 0
267 74 adantr φ m M +∞ M
268 78 adantr φ m M +∞ 0 < M
269 266 267 215 268 226 ltletrd φ m M +∞ 0 < m
270 215 269 elrpd φ m M +∞ m +
271 nfcsb1v _ n m / n A
272 271 nfel1 n m / n A
273 csbeq1a n = m A = m / n A
274 273 eleq1d n = m A m / n A
275 272 274 rspc m + n + A m / n A
276 23 275 mpan9 φ m + m / n A
277 270 276 syldan φ m M +∞ m / n A
278 277 adantlr φ seq 1 + F t m M +∞ m / n A
279 265 278 remulcld φ seq 1 + F t m M +∞ 2 R m / n A
280 279 recnd φ seq 1 + F t m M +∞ 2 R m / n A
281 1z 1
282 17 eqimss2i 1
283 282 232 climconst2 2 R m / n A 1 × 2 R m / n A 2 R m / n A
284 280 281 283 sylancl φ seq 1 + F t m M +∞ × 2 R m / n A 2 R m / n A
285 253 238 subcld φ seq 1 + F t m M +∞ i m seq 1 + F m seq 1 + F i
286 285 abscld φ seq 1 + F t m M +∞ i m seq 1 + F m seq 1 + F i
287 261 286 eqeltrd φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i
288 ovex 2 R m / n A V
289 288 fvconst2 i × 2 R m / n A i = 2 R m / n A
290 237 289 syl φ seq 1 + F t m M +∞ i m × 2 R m / n A i = 2 R m / n A
291 279 adantr φ seq 1 + F t m M +∞ i m 2 R m / n A
292 290 291 eqeltrd φ seq 1 + F t m M +∞ i m × 2 R m / n A i
293 simplll φ seq 1 + F t m M +∞ i m φ
294 293 3 syl φ seq 1 + F t m M +∞ i m N
295 293 7 syl φ seq 1 + F t m M +∞ i m X D
296 293 8 syl φ seq 1 + F t m M +∞ i m X 1 ˙
297 222 adantr φ seq 1 + F t m M +∞ i m M
298 293 11 sylan φ seq 1 + F t m M +∞ i m n + A
299 293 12 syl3an1 φ seq 1 + F t m M +∞ i m n + x + M n n x B A
300 293 13 syl φ seq 1 + F t m M +∞ i m n + A 0
301 293 15 syl φ seq 1 + F t m M +∞ i m R
302 293 16 syl φ seq 1 + F t m M +∞ i m u 0 ..^ N n 0 ..^ u X L n R
303 270 adantlr φ seq 1 + F t m M +∞ m +
304 303 adantr φ seq 1 + F t m M +∞ i m m +
305 227 adantr φ seq 1 + F t m M +∞ i m M m
306 216 adantr φ seq 1 + F t m M +∞ i m m
307 reflcl m m
308 peano2re m m + 1
309 306 307 308 3syl φ seq 1 + F t m M +∞ i m m + 1
310 flltp1 m m < m + 1
311 306 310 syl φ seq 1 + F t m M +∞ i m m < m + 1
312 306 309 311 ltled φ seq 1 + F t m M +∞ i m m m + 1
313 230 adantr φ seq 1 + F t m M +∞ i m m
314 simpr φ seq 1 + F t m M +∞ i m i m
315 1 2 294 4 5 6 295 296 9 297 298 299 300 14 301 302 304 305 312 313 314 dchrisumlem2 φ seq 1 + F t m M +∞ i m seq 1 + F i seq 1 + F m 2 R m / n A
316 253 238 abssubd φ seq 1 + F t m M +∞ i m seq 1 + F m seq 1 + F i = seq 1 + F i seq 1 + F m
317 261 316 eqtrd φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i = seq 1 + F i seq 1 + F m
318 315 317 290 3brtr4d φ seq 1 + F t m M +∞ i m k seq 1 + F m seq 1 + F k i × 2 R m / n A i
319 211 217 264 284 287 292 318 climle φ seq 1 + F t m M +∞ seq 1 + F m t 2 R m / n A
320 319 ralrimiva φ seq 1 + F t m M +∞ seq 1 + F m t 2 R m / n A
321 oveq1 c = 2 R c B = 2 R B
322 321 breq2d c = 2 R seq 1 + F x t c B seq 1 + F x t 2 R B
323 322 ralbidv c = 2 R x M +∞ seq 1 + F x t c B x M +∞ seq 1 + F x t 2 R B
324 2fveq3 m = x seq 1 + F m = seq 1 + F x
325 324 fvoveq1d m = x seq 1 + F m t = seq 1 + F x t
326 vex m V
327 326 a1i m = x m V
328 equequ2 m = x n = m n = x
329 328 biimpa m = x n = m n = x
330 329 9 syl m = x n = m A = B
331 327 330 csbied m = x m / n A = B
332 331 oveq2d m = x 2 R m / n A = 2 R B
333 325 332 breq12d m = x seq 1 + F m t 2 R m / n A seq 1 + F x t 2 R B
334 333 cbvralvw m M +∞ seq 1 + F m t 2 R m / n A x M +∞ seq 1 + F x t 2 R B
335 323 334 bitr4di c = 2 R x M +∞ seq 1 + F x t c B m M +∞ seq 1 + F m t 2 R m / n A
336 335 rspcev 2 R 0 +∞ m M +∞ seq 1 + F m t 2 R m / n A c 0 +∞ x M +∞ seq 1 + F x t c B
337 210 320 336 syl2anc φ seq 1 + F t c 0 +∞ x M +∞ seq 1 + F x t c B
338 r19.42v c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B seq 1 + F t c 0 +∞ x M +∞ seq 1 + F x t c B
339 207 337 338 sylanbrc φ seq 1 + F t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B
340 339 ex φ seq 1 + F t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B
341 340 eximdv φ t seq 1 + F t t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B
342 206 341 mpd φ t c 0 +∞ seq 1 + F t x M +∞ seq 1 + F x t c B