Metamath Proof Explorer


Theorem dchrisumlema

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrisum.2 n = x A = B
dchrisum.3 φ M
dchrisum.4 φ n + A
dchrisum.5 φ n + x + M n n x B A
dchrisum.6 φ n + A 0
dchrisum.7 F = n X L n A
Assertion dchrisumlema φ I + I / n A I M +∞ 0 I / n A

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrisum.2 n = x A = B
10 dchrisum.3 φ M
11 dchrisum.4 φ n + A
12 dchrisum.5 φ n + x + M n n x B A
13 dchrisum.6 φ n + A 0
14 dchrisum.7 F = n X L n A
15 11 ralrimiva φ n + A
16 nfcsb1v _ n I / n A
17 16 nfel1 n I / n A
18 csbeq1a n = I A = I / n A
19 18 eleq1d n = I A I / n A
20 17 19 rspc I + n + A I / n A
21 15 20 syl5com φ I + I / n A
22 eqid I + 1 = I + 1
23 10 nnred φ M
24 elicopnf M I M +∞ I M I
25 23 24 syl φ I M +∞ I M I
26 25 simprbda φ I M +∞ I
27 26 flcld φ I M +∞ I
28 27 peano2zd φ I M +∞ I + 1
29 nnuz = 1
30 1zzd φ 1
31 nnrp i i +
32 31 ssriv +
33 eqid n + A = n + A
34 33 11 dmmptd φ dom n + A = +
35 32 34 sseqtrrid φ dom n + A
36 29 30 13 35 rlimclim1 φ n + A 0
37 36 adantr φ I M +∞ n + A 0
38 0red φ I M +∞ 0
39 23 adantr φ I M +∞ M
40 10 nngt0d φ 0 < M
41 40 adantr φ I M +∞ 0 < M
42 25 simplbda φ I M +∞ M I
43 38 39 26 41 42 ltletrd φ I M +∞ 0 < I
44 26 43 elrpd φ I M +∞ I +
45 15 adantr φ I M +∞ n + A
46 44 45 20 sylc φ I M +∞ I / n A
47 46 recnd φ I M +∞ I / n A
48 ssid I + 1 I + 1
49 fvex I + 1 V
50 48 49 climconst2 I / n A I + 1 I + 1 × I / n A I / n A
51 47 28 50 syl2anc φ I M +∞ I + 1 × I / n A I / n A
52 44 rpge0d φ I M +∞ 0 I
53 flge0nn0 I 0 I I 0
54 26 52 53 syl2anc φ I M +∞ I 0
55 nn0p1nn I 0 I + 1
56 54 55 syl φ I M +∞ I + 1
57 eluznn I + 1 i I + 1 i
58 56 57 sylan φ I M +∞ i I + 1 i
59 58 nnrpd φ I M +∞ i I + 1 i +
60 15 ad2antrr φ I M +∞ i I + 1 n + A
61 nfcsb1v _ n i / n A
62 61 nfel1 n i / n A
63 csbeq1a n = i A = i / n A
64 63 eleq1d n = i A i / n A
65 62 64 rspc i + n + A i / n A
66 59 60 65 sylc φ I M +∞ i I + 1 i / n A
67 33 fvmpts i + i / n A n + A i = i / n A
68 59 66 67 syl2anc φ I M +∞ i I + 1 n + A i = i / n A
69 68 66 eqeltrd φ I M +∞ i I + 1 n + A i
70 fvconst2g I / n A i I + 1 I + 1 × I / n A i = I / n A
71 46 70 sylan φ I M +∞ i I + 1 I + 1 × I / n A i = I / n A
72 46 adantr φ I M +∞ i I + 1 I / n A
73 71 72 eqeltrd φ I M +∞ i I + 1 I + 1 × I / n A i
74 44 adantr φ I M +∞ i I + 1 I +
75 12 3expia φ n + x + M n n x B A
76 75 ralrimivva φ n + x + M n n x B A
77 76 ad2antrr φ I M +∞ i I + 1 n + x + M n n x B A
78 nfcv _ n +
79 nfv n M I I x
80 nfcv _ n B
81 nfcv _ n
82 80 81 16 nfbr n B I / n A
83 79 82 nfim n M I I x B I / n A
84 78 83 nfralw n x + M I I x B I / n A
85 breq2 n = I M n M I
86 breq1 n = I n x I x
87 85 86 anbi12d n = I M n n x M I I x
88 18 breq2d n = I B A B I / n A
89 87 88 imbi12d n = I M n n x B A M I I x B I / n A
90 89 ralbidv n = I x + M n n x B A x + M I I x B I / n A
91 84 90 rspc I + n + x + M n n x B A x + M I I x B I / n A
92 74 77 91 sylc φ I M +∞ i I + 1 x + M I I x B I / n A
93 42 adantr φ I M +∞ i I + 1 M I
94 26 adantr φ I M +∞ i I + 1 I
95 reflcl I I
96 peano2re I I + 1
97 94 95 96 3syl φ I M +∞ i I + 1 I + 1
98 58 nnred φ I M +∞ i I + 1 i
99 fllep1 I I I + 1
100 26 99 syl φ I M +∞ I I + 1
101 100 adantr φ I M +∞ i I + 1 I I + 1
102 eluzle i I + 1 I + 1 i
103 102 adantl φ I M +∞ i I + 1 I + 1 i
104 94 97 98 101 103 letrd φ I M +∞ i I + 1 I i
105 93 104 jca φ I M +∞ i I + 1 M I I i
106 breq2 x = i I x I i
107 106 anbi2d x = i M I I x M I I i
108 eqvisset x = i i V
109 equtr2 x = i n = i x = n
110 9 equcoms x = n A = B
111 109 110 syl x = i n = i A = B
112 108 111 csbied x = i i / n A = B
113 112 eqcomd x = i B = i / n A
114 113 breq1d x = i B I / n A i / n A I / n A
115 107 114 imbi12d x = i M I I x B I / n A M I I i i / n A I / n A
116 115 rspcv i + x + M I I x B I / n A M I I i i / n A I / n A
117 59 92 105 116 syl3c φ I M +∞ i I + 1 i / n A I / n A
118 117 68 71 3brtr4d φ I M +∞ i I + 1 n + A i I + 1 × I / n A i
119 22 28 37 51 69 73 118 climle φ I M +∞ 0 I / n A
120 119 ex φ I M +∞ 0 I / n A
121 21 120 jca φ I + I / n A I M +∞ 0 I / n A