Metamath Proof Explorer


Theorem dchrmhm

Description: A Dirichlet character is a monoid homomorphism. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
Assertion dchrmhm D mulGrp Z MndHom mulGrp fld

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 eqid Base Z = Base Z
5 eqid Unit Z = Unit Z
6 1 3 dchrrcl x D N
7 1 2 4 5 6 3 dchrelbas x D x D x mulGrp Z MndHom mulGrp fld Base Z Unit Z × 0 x
8 7 ibi x D x mulGrp Z MndHom mulGrp fld Base Z Unit Z × 0 x
9 8 simpld x D x mulGrp Z MndHom mulGrp fld
10 9 ssriv D mulGrp Z MndHom mulGrp fld