Metamath Proof Explorer


Theorem dchrmul

Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrmul.t · ˙ = + G
dchrmul.x φ X D
dchrmul.y φ Y D
Assertion dchrmul φ X · ˙ Y = X × f Y

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrmul.t · ˙ = + G
5 dchrmul.x φ X D
6 dchrmul.y φ Y D
7 1 3 dchrrcl X D N
8 5 7 syl φ N
9 1 2 3 4 8 dchrplusg φ · ˙ = f × D × D
10 9 oveqd φ X · ˙ Y = X f × D × D Y
11 5 6 ofmresval φ X f × D × D Y = X × f Y
12 10 11 eqtrd φ X · ˙ Y = X × f Y