Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrisumn0.f |
|
10 |
|
dchrisumn0.c |
|
11 |
|
dchrisumn0.t |
|
12 |
|
dchrisumn0.1 |
|
13 |
|
rpssre |
|
14 |
|
ax-1cn |
|
15 |
|
o1const |
|
16 |
13 14 15
|
mp2an |
|
17 |
16
|
a1i |
|
18 |
14
|
a1i |
|
19 |
|
fzfid |
|
20 |
7
|
ad2antrr |
|
21 |
|
elfzelz |
|
22 |
21
|
adantl |
|
23 |
4 1 5 2 20 22
|
dchrzrhcl |
|
24 |
|
elfznn |
|
25 |
24
|
adantl |
|
26 |
|
mucl |
|
27 |
26
|
zred |
|
28 |
|
nndivre |
|
29 |
27 28
|
mpancom |
|
30 |
25 29
|
syl |
|
31 |
30
|
recnd |
|
32 |
23 31
|
mulcld |
|
33 |
19 32
|
fsumcl |
|
34 |
|
climcl |
|
35 |
11 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
33 36
|
mulcld |
|
38 |
13
|
a1i |
|
39 |
|
subcl |
|
40 |
14 37 39
|
sylancr |
|
41 |
|
1red |
|
42 |
|
elrege0 |
|
43 |
10 42
|
sylib |
|
44 |
43
|
simpld |
|
45 |
|
fzfid |
|
46 |
32
|
adantlrr |
|
47 |
|
nnuz |
|
48 |
|
1zzd |
|
49 |
7
|
adantr |
|
50 |
|
nnz |
|
51 |
50
|
adantl |
|
52 |
4 1 5 2 49 51
|
dchrzrhcl |
|
53 |
|
nncn |
|
54 |
53
|
adantl |
|
55 |
|
nnne0 |
|
56 |
55
|
adantl |
|
57 |
52 54 56
|
divcld |
|
58 |
|
2fveq3 |
|
59 |
|
id |
|
60 |
58 59
|
oveq12d |
|
61 |
60
|
cbvmptv |
|
62 |
9 61
|
eqtri |
|
63 |
57 62
|
fmptd |
|
64 |
63
|
ffvelrnda |
|
65 |
47 48 64
|
serf |
|
66 |
65
|
ad2antrr |
|
67 |
|
simprl |
|
68 |
67
|
rpred |
|
69 |
|
nndivre |
|
70 |
68 24 69
|
syl2an |
|
71 |
24
|
adantl |
|
72 |
71
|
nncnd |
|
73 |
72
|
mulid2d |
|
74 |
|
fznnfl |
|
75 |
68 74
|
syl |
|
76 |
75
|
simplbda |
|
77 |
73 76
|
eqbrtrd |
|
78 |
|
1red |
|
79 |
68
|
adantr |
|
80 |
71
|
nnrpd |
|
81 |
78 79 80
|
lemuldivd |
|
82 |
77 81
|
mpbid |
|
83 |
|
flge1nn |
|
84 |
70 82 83
|
syl2anc |
|
85 |
66 84
|
ffvelrnd |
|
86 |
46 85
|
mulcld |
|
87 |
35
|
ad2antrr |
|
88 |
46 87
|
mulcld |
|
89 |
45 86 88
|
fsumsub |
|
90 |
46 85 87
|
subdid |
|
91 |
90
|
sumeq2dv |
|
92 |
7
|
ad3antrrr |
|
93 |
21
|
ad2antlr |
|
94 |
|
elfzelz |
|
95 |
94
|
adantl |
|
96 |
4 1 5 2 92 93 95
|
dchrzrhmul |
|
97 |
96
|
oveq1d |
|
98 |
23
|
adantlrr |
|
99 |
98
|
adantr |
|
100 |
72
|
adantr |
|
101 |
4 1 5 2 92 95
|
dchrzrhcl |
|
102 |
|
elfznn |
|
103 |
102
|
adantl |
|
104 |
103
|
nncnd |
|
105 |
71
|
nnne0d |
|
106 |
105
|
adantr |
|
107 |
103
|
nnne0d |
|
108 |
99 100 101 104 106 107
|
divmuldivd |
|
109 |
97 108
|
eqtr4d |
|
110 |
109
|
oveq2d |
|
111 |
71 26
|
syl |
|
112 |
111
|
zcnd |
|
113 |
112
|
adantr |
|
114 |
99 100 106
|
divcld |
|
115 |
101 104 107
|
divcld |
|
116 |
113 114 115
|
mulassd |
|
117 |
113 99 100 106
|
div12d |
|
118 |
117
|
oveq1d |
|
119 |
110 116 118
|
3eqtr2d |
|
120 |
119
|
sumeq2dv |
|
121 |
|
fzfid |
|
122 |
|
simpll |
|
123 |
122 102 57
|
syl2an |
|
124 |
121 46 123
|
fsummulc2 |
|
125 |
|
ovex |
|
126 |
60 9 125
|
fvmpt |
|
127 |
103 126
|
syl |
|
128 |
84 47
|
eleqtrdi |
|
129 |
127 128 123
|
fsumser |
|
130 |
129
|
oveq2d |
|
131 |
120 124 130
|
3eqtr2rd |
|
132 |
131
|
sumeq2dv |
|
133 |
|
2fveq3 |
|
134 |
|
id |
|
135 |
133 134
|
oveq12d |
|
136 |
135
|
oveq2d |
|
137 |
|
elrabi |
|
138 |
137
|
ad2antll |
|
139 |
138 26
|
syl |
|
140 |
139
|
zcnd |
|
141 |
7
|
ad2antrr |
|
142 |
|
elfzelz |
|
143 |
142
|
adantl |
|
144 |
4 1 5 2 141 143
|
dchrzrhcl |
|
145 |
|
fz1ssnn |
|
146 |
145
|
a1i |
|
147 |
146
|
sselda |
|
148 |
147
|
nncnd |
|
149 |
147
|
nnne0d |
|
150 |
144 148 149
|
divcld |
|
151 |
150
|
adantrr |
|
152 |
140 151
|
mulcld |
|
153 |
136 68 152
|
dvdsflsumcom |
|
154 |
|
2fveq3 |
|
155 |
|
id |
|
156 |
154 155
|
oveq12d |
|
157 |
|
simprr |
|
158 |
|
flge1nn |
|
159 |
68 157 158
|
syl2anc |
|
160 |
159 47
|
eleqtrdi |
|
161 |
|
eluzfz1 |
|
162 |
160 161
|
syl |
|
163 |
156 45 146 162 150
|
musumsum |
|
164 |
132 153 163
|
3eqtr2d |
|
165 |
4 1 5 2 7
|
dchrzrh1 |
|
166 |
165
|
adantr |
|
167 |
166
|
oveq1d |
|
168 |
|
1div1e1 |
|
169 |
167 168
|
eqtrdi |
|
170 |
164 169
|
eqtr2d |
|
171 |
35
|
adantr |
|
172 |
45 171 46
|
fsummulc1 |
|
173 |
170 172
|
oveq12d |
|
174 |
89 91 173
|
3eqtr4rd |
|
175 |
174
|
fveq2d |
|
176 |
85 87
|
subcld |
|
177 |
46 176
|
mulcld |
|
178 |
45 177
|
fsumcl |
|
179 |
178
|
abscld |
|
180 |
177
|
abscld |
|
181 |
45 180
|
fsumrecl |
|
182 |
44
|
adantr |
|
183 |
45 177
|
fsumabs |
|
184 |
|
reflcl |
|
185 |
68 184
|
syl |
|
186 |
185 182
|
remulcld |
|
187 |
186 67
|
rerpdivcld |
|
188 |
182 67
|
rerpdivcld |
|
189 |
188
|
adantr |
|
190 |
46
|
abscld |
|
191 |
71
|
nnrecred |
|
192 |
176
|
abscld |
|
193 |
80
|
rpred |
|
194 |
189 193
|
remulcld |
|
195 |
46
|
absge0d |
|
196 |
176
|
absge0d |
|
197 |
98
|
abscld |
|
198 |
31
|
adantlrr |
|
199 |
198
|
abscld |
|
200 |
98
|
absge0d |
|
201 |
198
|
absge0d |
|
202 |
|
eqid |
|
203 |
7
|
ad2antrr |
|
204 |
3
|
nnnn0d |
|
205 |
1 202 2
|
znzrhfo |
|
206 |
|
fof |
|
207 |
204 205 206
|
3syl |
|
208 |
207
|
adantr |
|
209 |
|
ffvelrn |
|
210 |
208 21 209
|
syl2an |
|
211 |
4 5 1 202 203 210
|
dchrabs2 |
|
212 |
112 72 105
|
absdivd |
|
213 |
80
|
rprege0d |
|
214 |
|
absid |
|
215 |
213 214
|
syl |
|
216 |
215
|
oveq2d |
|
217 |
212 216
|
eqtrd |
|
218 |
112
|
abscld |
|
219 |
|
mule1 |
|
220 |
71 219
|
syl |
|
221 |
218 78 80 220
|
lediv1dd |
|
222 |
217 221
|
eqbrtrd |
|
223 |
197 78 199 191 200 201 211 222
|
lemul12ad |
|
224 |
98 198
|
absmuld |
|
225 |
191
|
recnd |
|
226 |
225
|
mulid2d |
|
227 |
226
|
eqcomd |
|
228 |
223 224 227
|
3brtr4d |
|
229 |
|
2fveq3 |
|
230 |
229
|
fvoveq1d |
|
231 |
|
oveq2 |
|
232 |
230 231
|
breq12d |
|
233 |
12
|
ad2antrr |
|
234 |
|
1re |
|
235 |
|
elicopnf |
|
236 |
234 235
|
ax-mp |
|
237 |
70 82 236
|
sylanbrc |
|
238 |
232 233 237
|
rspcdva |
|
239 |
182
|
recnd |
|
240 |
239
|
adantr |
|
241 |
|
rpcnne0 |
|
242 |
241
|
ad2antrl |
|
243 |
242
|
adantr |
|
244 |
|
divdiv2 |
|
245 |
240 243 72 105 244
|
syl112anc |
|
246 |
|
div23 |
|
247 |
240 72 243 246
|
syl3anc |
|
248 |
245 247
|
eqtrd |
|
249 |
238 248
|
breqtrd |
|
250 |
190 191 192 194 195 196 228 249
|
lemul12ad |
|
251 |
46 176
|
absmuld |
|
252 |
188
|
recnd |
|
253 |
252
|
adantr |
|
254 |
253 72 105
|
divcan4d |
|
255 |
253 72
|
mulcld |
|
256 |
255 72 105
|
divrec2d |
|
257 |
254 256
|
eqtr3d |
|
258 |
250 251 257
|
3brtr4d |
|
259 |
45 180 189 258
|
fsumle |
|
260 |
159
|
nnnn0d |
|
261 |
|
hashfz1 |
|
262 |
260 261
|
syl |
|
263 |
262
|
oveq1d |
|
264 |
|
fsumconst |
|
265 |
45 252 264
|
syl2anc |
|
266 |
159
|
nncnd |
|
267 |
|
divass |
|
268 |
266 239 242 267
|
syl3anc |
|
269 |
263 265 268
|
3eqtr4d |
|
270 |
259 269
|
breqtrd |
|
271 |
43
|
adantr |
|
272 |
|
flle |
|
273 |
68 272
|
syl |
|
274 |
|
lemul1a |
|
275 |
185 68 271 273 274
|
syl31anc |
|
276 |
186 182 67
|
ledivmuld |
|
277 |
275 276
|
mpbird |
|
278 |
181 187 182 270 277
|
letrd |
|
279 |
179 181 182 183 278
|
letrd |
|
280 |
175 279
|
eqbrtrd |
|
281 |
38 40 41 44 280
|
elo1d |
|
282 |
18 37 281
|
o1dif |
|
283 |
17 282
|
mpbid |
|