Metamath Proof Explorer


Theorem dchrmusumlem

Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by n , is bounded. Equation 9.4.16 of Shapiro, p. 379. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
dchrmusum.g G = DChr N
dchrmusum.d D = Base G
dchrmusum.1 1 ˙ = 0 G
dchrmusum.b φ X D
dchrmusum.n1 φ X 1 ˙
dchrmusum.f F = a X L a a
dchrmusum.c φ C 0 +∞
dchrmusum.t φ seq 1 + F T
dchrmusum.2 φ y 1 +∞ seq 1 + F y T C y
Assertion dchrmusumlem φ x + n = 1 x X L n μ n n 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 dchrmusum.g G = DChr N
5 dchrmusum.d D = Base G
6 dchrmusum.1 1 ˙ = 0 G
7 dchrmusum.b φ X D
8 dchrmusum.n1 φ X 1 ˙
9 dchrmusum.f F = a X L a a
10 dchrmusum.c φ C 0 +∞
11 dchrmusum.t φ seq 1 + F T
12 dchrmusum.2 φ y 1 +∞ seq 1 + F y T C y
13 fzfid φ x + 1 x Fin
14 7 ad2antrr φ x + n 1 x X D
15 elfzelz n 1 x n
16 15 adantl φ x + n 1 x n
17 4 1 5 2 14 16 dchrzrhcl φ x + n 1 x X L n
18 elfznn n 1 x n
19 18 adantl φ x + n 1 x n
20 mucl n μ n
21 19 20 syl φ x + n 1 x μ n
22 21 zred φ x + n 1 x μ n
23 22 19 nndivred φ x + n 1 x μ n n
24 23 recnd φ x + n 1 x μ n n
25 17 24 mulcld φ x + n 1 x X L n μ n n
26 13 25 fsumcl φ x + n = 1 x X L n μ n n
27 climcl seq 1 + F T T
28 11 27 syl φ T
29 28 adantr φ x + T
30 26 29 mulcld φ x + n = 1 x X L n μ n n T
31 1 2 3 4 5 6 7 8 9 10 11 12 dchrisumn0 φ T 0
32 31 adantr φ x + T 0
33 30 29 32 divrecd φ x + n = 1 x X L n μ n n T T = n = 1 x X L n μ n n T 1 T
34 26 29 32 divcan4d φ x + n = 1 x X L n μ n n T T = n = 1 x X L n μ n n
35 33 34 eqtr3d φ x + n = 1 x X L n μ n n T 1 T = n = 1 x X L n μ n n
36 35 mpteq2dva φ x + n = 1 x X L n μ n n T 1 T = x + n = 1 x X L n μ n n
37 28 31 reccld φ 1 T
38 37 adantr φ x + 1 T
39 1 2 3 4 5 6 7 8 9 10 11 12 dchrmusum2 φ x + n = 1 x X L n μ n n T 𝑂1
40 rpssre +
41 o1const + 1 T x + 1 T 𝑂1
42 40 37 41 sylancr φ x + 1 T 𝑂1
43 30 38 39 42 o1mul2 φ x + n = 1 x X L n μ n n T 1 T 𝑂1
44 36 43 eqeltrrd φ x + n = 1 x X L n μ n n 𝑂1