Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrisumn0.f |
|
10 |
|
oveq2 |
|
11 |
|
1nn |
|
12 |
11
|
a1i |
|
13 |
|
rpreccl |
|
14 |
13
|
adantl |
|
15 |
14
|
rpred |
|
16 |
|
simp3r |
|
17 |
|
rpregt0 |
|
18 |
|
rpregt0 |
|
19 |
|
lerec |
|
20 |
17 18 19
|
syl2an |
|
21 |
20
|
3ad2ant2 |
|
22 |
16 21
|
mpbid |
|
23 |
|
ax-1cn |
|
24 |
|
divrcnv |
|
25 |
23 24
|
mp1i |
|
26 |
|
2fveq3 |
|
27 |
|
oveq2 |
|
28 |
26 27
|
oveq12d |
|
29 |
28
|
cbvmptv |
|
30 |
1 2 3 4 5 6 7 8 10 12 15 22 25 29
|
dchrisum |
|
31 |
7
|
adantr |
|
32 |
|
nnz |
|
33 |
32
|
adantl |
|
34 |
4 1 5 2 31 33
|
dchrzrhcl |
|
35 |
|
nncn |
|
36 |
35
|
adantl |
|
37 |
|
nnne0 |
|
38 |
37
|
adantl |
|
39 |
34 36 38
|
divrecd |
|
40 |
39
|
mpteq2dva |
|
41 |
|
id |
|
42 |
26 41
|
oveq12d |
|
43 |
42
|
cbvmptv |
|
44 |
9 43
|
eqtri |
|
45 |
40 44 29
|
3eqtr4g |
|
46 |
45
|
adantr |
|
47 |
46
|
seqeq3d |
|
48 |
47
|
breq1d |
|
49 |
|
2fveq3 |
|
50 |
49
|
fvoveq1d |
|
51 |
|
oveq2 |
|
52 |
50 51
|
breq12d |
|
53 |
52
|
cbvralvw |
|
54 |
45
|
seqeq3d |
|
55 |
54
|
fveq1d |
|
56 |
55
|
fvoveq1d |
|
57 |
56
|
ad2antrr |
|
58 |
|
elrege0 |
|
59 |
58
|
simplbi |
|
60 |
59
|
recnd |
|
61 |
60
|
ad2antlr |
|
62 |
|
1re |
|
63 |
|
elicopnf |
|
64 |
62 63
|
ax-mp |
|
65 |
64
|
simplbi |
|
66 |
65
|
adantl |
|
67 |
66
|
recnd |
|
68 |
|
0red |
|
69 |
|
1red |
|
70 |
|
0lt1 |
|
71 |
70
|
a1i |
|
72 |
64
|
simprbi |
|
73 |
72
|
adantl |
|
74 |
68 69 66 71 73
|
ltletrd |
|
75 |
74
|
gt0ne0d |
|
76 |
61 67 75
|
divrecd |
|
77 |
57 76
|
breq12d |
|
78 |
77
|
ralbidva |
|
79 |
53 78
|
syl5bb |
|
80 |
48 79
|
anbi12d |
|
81 |
80
|
rexbidva |
|
82 |
81
|
exbidv |
|
83 |
30 82
|
mpbird |
|