| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum.g |
|
| 5 |
|
rpvmasum.d |
|
| 6 |
|
rpvmasum.1 |
|
| 7 |
|
dchrisum.b |
|
| 8 |
|
dchrisum.n1 |
|
| 9 |
|
dchrisumn0.f |
|
| 10 |
|
oveq2 |
|
| 11 |
|
1nn |
|
| 12 |
11
|
a1i |
|
| 13 |
|
rpreccl |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
rpred |
|
| 16 |
|
simp3r |
|
| 17 |
|
rpregt0 |
|
| 18 |
|
rpregt0 |
|
| 19 |
|
lerec |
|
| 20 |
17 18 19
|
syl2an |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
16 21
|
mpbid |
|
| 23 |
|
ax-1cn |
|
| 24 |
|
divrcnv |
|
| 25 |
23 24
|
mp1i |
|
| 26 |
|
2fveq3 |
|
| 27 |
|
oveq2 |
|
| 28 |
26 27
|
oveq12d |
|
| 29 |
28
|
cbvmptv |
|
| 30 |
1 2 3 4 5 6 7 8 10 12 15 22 25 29
|
dchrisum |
|
| 31 |
7
|
adantr |
|
| 32 |
|
nnz |
|
| 33 |
32
|
adantl |
|
| 34 |
4 1 5 2 31 33
|
dchrzrhcl |
|
| 35 |
|
nncn |
|
| 36 |
35
|
adantl |
|
| 37 |
|
nnne0 |
|
| 38 |
37
|
adantl |
|
| 39 |
34 36 38
|
divrecd |
|
| 40 |
39
|
mpteq2dva |
|
| 41 |
|
id |
|
| 42 |
26 41
|
oveq12d |
|
| 43 |
42
|
cbvmptv |
|
| 44 |
9 43
|
eqtri |
|
| 45 |
40 44 29
|
3eqtr4g |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
seqeq3d |
|
| 48 |
47
|
breq1d |
|
| 49 |
|
2fveq3 |
|
| 50 |
49
|
fvoveq1d |
|
| 51 |
|
oveq2 |
|
| 52 |
50 51
|
breq12d |
|
| 53 |
52
|
cbvralvw |
|
| 54 |
45
|
seqeq3d |
|
| 55 |
54
|
fveq1d |
|
| 56 |
55
|
fvoveq1d |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
|
elrege0 |
|
| 59 |
58
|
simplbi |
|
| 60 |
59
|
recnd |
|
| 61 |
60
|
ad2antlr |
|
| 62 |
|
1re |
|
| 63 |
|
elicopnf |
|
| 64 |
62 63
|
ax-mp |
|
| 65 |
64
|
simplbi |
|
| 66 |
65
|
adantl |
|
| 67 |
66
|
recnd |
|
| 68 |
|
0red |
|
| 69 |
|
1red |
|
| 70 |
|
0lt1 |
|
| 71 |
70
|
a1i |
|
| 72 |
64
|
simprbi |
|
| 73 |
72
|
adantl |
|
| 74 |
68 69 66 71 73
|
ltletrd |
|
| 75 |
74
|
gt0ne0d |
|
| 76 |
61 67 75
|
divrecd |
|
| 77 |
57 76
|
breq12d |
|
| 78 |
77
|
ralbidva |
|
| 79 |
53 78
|
bitrid |
|
| 80 |
48 79
|
anbi12d |
|
| 81 |
80
|
rexbidva |
|
| 82 |
81
|
exbidv |
|
| 83 |
30 82
|
mpbird |
|