Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
|
2 |
|
dchrmhm.z |
|
3 |
|
dchrmhm.b |
|
4 |
|
dchrn0.b |
|
5 |
|
dchrn0.u |
|
6 |
|
dchrn0.x |
|
7 |
|
dchrn0.a |
|
8 |
|
fveq2 |
|
9 |
8
|
neeq1d |
|
10 |
|
eleq1 |
|
11 |
9 10
|
imbi12d |
|
12 |
1 3
|
dchrrcl |
|
13 |
6 12
|
syl |
|
14 |
1 2 4 5 13 3
|
dchrelbas2 |
|
15 |
6 14
|
mpbid |
|
16 |
15
|
simprd |
|
17 |
11 16 7
|
rspcdva |
|
18 |
17
|
imp |
|
19 |
|
ax-1ne0 |
|
20 |
19
|
a1i |
|
21 |
13
|
nnnn0d |
|
22 |
2
|
zncrng |
|
23 |
|
crngring |
|
24 |
21 22 23
|
3syl |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
5 25 26 27
|
unitrinv |
|
29 |
24 28
|
sylan |
|
30 |
29
|
fveq2d |
|
31 |
15
|
simpld |
|
32 |
31
|
adantr |
|
33 |
7
|
adantr |
|
34 |
5 25 4
|
ringinvcl |
|
35 |
24 34
|
sylan |
|
36 |
|
eqid |
|
37 |
36 4
|
mgpbas |
|
38 |
36 26
|
mgpplusg |
|
39 |
|
eqid |
|
40 |
|
cnfldmul |
|
41 |
39 40
|
mgpplusg |
|
42 |
37 38 41
|
mhmlin |
|
43 |
32 33 35 42
|
syl3anc |
|
44 |
36 27
|
ringidval |
|
45 |
|
cnfld1 |
|
46 |
39 45
|
ringidval |
|
47 |
44 46
|
mhm0 |
|
48 |
32 47
|
syl |
|
49 |
30 43 48
|
3eqtr3d |
|
50 |
|
cnfldbas |
|
51 |
39 50
|
mgpbas |
|
52 |
37 51
|
mhmf |
|
53 |
32 52
|
syl |
|
54 |
53 35
|
ffvelrnd |
|
55 |
54
|
mul02d |
|
56 |
20 49 55
|
3netr4d |
|
57 |
|
oveq1 |
|
58 |
57
|
necon3i |
|
59 |
56 58
|
syl |
|
60 |
18 59
|
impbida |
|