Metamath Proof Explorer


Theorem dchrn0

Description: A Dirichlet character is nonzero on the units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrn0.b B = Base Z
dchrn0.u U = Unit Z
dchrn0.x φ X D
dchrn0.a φ A B
Assertion dchrn0 φ X A 0 A U

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrn0.b B = Base Z
5 dchrn0.u U = Unit Z
6 dchrn0.x φ X D
7 dchrn0.a φ A B
8 fveq2 x = A X x = X A
9 8 neeq1d x = A X x 0 X A 0
10 eleq1 x = A x U A U
11 9 10 imbi12d x = A X x 0 x U X A 0 A U
12 1 3 dchrrcl X D N
13 6 12 syl φ N
14 1 2 4 5 13 3 dchrelbas2 φ X D X mulGrp Z MndHom mulGrp fld x B X x 0 x U
15 6 14 mpbid φ X mulGrp Z MndHom mulGrp fld x B X x 0 x U
16 15 simprd φ x B X x 0 x U
17 11 16 7 rspcdva φ X A 0 A U
18 17 imp φ X A 0 A U
19 ax-1ne0 1 0
20 19 a1i φ A U 1 0
21 13 nnnn0d φ N 0
22 2 zncrng N 0 Z CRing
23 crngring Z CRing Z Ring
24 21 22 23 3syl φ Z Ring
25 eqid inv r Z = inv r Z
26 eqid Z = Z
27 eqid 1 Z = 1 Z
28 5 25 26 27 unitrinv Z Ring A U A Z inv r Z A = 1 Z
29 24 28 sylan φ A U A Z inv r Z A = 1 Z
30 29 fveq2d φ A U X A Z inv r Z A = X 1 Z
31 15 simpld φ X mulGrp Z MndHom mulGrp fld
32 31 adantr φ A U X mulGrp Z MndHom mulGrp fld
33 7 adantr φ A U A B
34 5 25 4 ringinvcl Z Ring A U inv r Z A B
35 24 34 sylan φ A U inv r Z A B
36 eqid mulGrp Z = mulGrp Z
37 36 4 mgpbas B = Base mulGrp Z
38 36 26 mgpplusg Z = + mulGrp Z
39 eqid mulGrp fld = mulGrp fld
40 cnfldmul × = fld
41 39 40 mgpplusg × = + mulGrp fld
42 37 38 41 mhmlin X mulGrp Z MndHom mulGrp fld A B inv r Z A B X A Z inv r Z A = X A X inv r Z A
43 32 33 35 42 syl3anc φ A U X A Z inv r Z A = X A X inv r Z A
44 36 27 ringidval 1 Z = 0 mulGrp Z
45 cnfld1 1 = 1 fld
46 39 45 ringidval 1 = 0 mulGrp fld
47 44 46 mhm0 X mulGrp Z MndHom mulGrp fld X 1 Z = 1
48 32 47 syl φ A U X 1 Z = 1
49 30 43 48 3eqtr3d φ A U X A X inv r Z A = 1
50 cnfldbas = Base fld
51 39 50 mgpbas = Base mulGrp fld
52 37 51 mhmf X mulGrp Z MndHom mulGrp fld X : B
53 32 52 syl φ A U X : B
54 53 35 ffvelrnd φ A U X inv r Z A
55 54 mul02d φ A U 0 X inv r Z A = 0
56 20 49 55 3netr4d φ A U X A X inv r Z A 0 X inv r Z A
57 oveq1 X A = 0 X A X inv r Z A = 0 X inv r Z A
58 57 necon3i X A X inv r Z A 0 X inv r Z A X A 0
59 56 58 syl φ A U X A 0
60 18 59 impbida φ X A 0 A U