Metamath Proof Explorer


Theorem dchrplusg

Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrmul.t · ˙ = + G
dchrplusg.n φ N
Assertion dchrplusg φ · ˙ = f × D × D

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrmul.t · ˙ = + G
5 dchrplusg.n φ N
6 eqid Base Z = Base Z
7 eqid Unit Z = Unit Z
8 1 2 6 7 5 3 dchrbas φ D = x mulGrp Z MndHom mulGrp fld | Base Z Unit Z × 0 x
9 1 2 6 7 5 8 dchrval φ G = Base ndx D + ndx f × D × D
10 9 fveq2d φ + G = + Base ndx D + ndx f × D × D
11 3 fvexi D V
12 11 11 xpex D × D V
13 ofexg D × D V f × D × D V
14 eqid Base ndx D + ndx f × D × D = Base ndx D + ndx f × D × D
15 14 grpplusg f × D × D V f × D × D = + Base ndx D + ndx f × D × D
16 12 13 15 mp2b f × D × D = + Base ndx D + ndx f × D × D
17 10 4 16 3eqtr4g φ · ˙ = f × D × D