Step |
Hyp |
Ref |
Expression |
1 |
|
dchrpt.g |
|
2 |
|
dchrpt.z |
|
3 |
|
dchrpt.d |
|
4 |
|
dchrpt.b |
|
5 |
|
dchrpt.1 |
|
6 |
|
dchrpt.n |
|
7 |
|
dchrpt.n1 |
|
8 |
|
dchrpt.u |
|
9 |
|
dchrpt.h |
|
10 |
|
dchrpt.m |
|
11 |
|
dchrpt.s |
|
12 |
|
dchrpt.au |
|
13 |
|
dchrpt.w |
|
14 |
|
dchrpt.2 |
|
15 |
|
dchrpt.3 |
|
16 |
6
|
nnnn0d |
|
17 |
2
|
zncrng |
|
18 |
16 17
|
syl |
|
19 |
|
crngring |
|
20 |
18 19
|
syl |
|
21 |
8 9
|
unitgrp |
|
22 |
20 21
|
syl |
|
23 |
22
|
grpmndd |
|
24 |
13
|
dmexd |
|
25 |
|
eqid |
|
26 |
25
|
gsumz |
|
27 |
23 24 26
|
syl2anc |
|
28 |
8 9 5
|
unitgrpid |
|
29 |
20 28
|
syl |
|
30 |
29
|
mpteq2dv |
|
31 |
30
|
oveq2d |
|
32 |
27 31 29
|
3eqtr4d |
|
33 |
7 32
|
neeqtrrd |
|
34 |
|
zex |
|
35 |
34
|
mptex |
|
36 |
35
|
rnex |
|
37 |
36 11
|
dmmpti |
|
38 |
37
|
a1i |
|
39 |
|
eqid |
|
40 |
12 15
|
eleqtrrd |
|
41 |
|
eqid |
|
42 |
29
|
adantr |
|
43 |
14 38
|
dprdf2 |
|
44 |
43
|
ffvelrnda |
|
45 |
25
|
subg0cl |
|
46 |
44 45
|
syl |
|
47 |
42 46
|
eqeltrd |
|
48 |
5
|
fvexi |
|
49 |
48
|
a1i |
|
50 |
24 49
|
fczfsuppd |
|
51 |
|
fconstmpt |
|
52 |
51
|
eqcomi |
|
53 |
52
|
a1i |
|
54 |
29
|
eqcomd |
|
55 |
50 53 54
|
3brtr4d |
|
56 |
41 14 38 47 55
|
dprdwd |
|
57 |
14 38 39 40 25 41 56
|
dpjeq |
|
58 |
57
|
necon3abid |
|
59 |
33 58
|
mpbid |
|
60 |
|
rexnal |
|
61 |
59 60
|
sylibr |
|
62 |
|
df-ne |
|
63 |
6
|
adantr |
|
64 |
7
|
adantr |
|
65 |
12
|
adantr |
|
66 |
13
|
adantr |
|
67 |
14
|
adantr |
|
68 |
15
|
adantr |
|
69 |
|
eqid |
|
70 |
|
eqid |
|
71 |
|
simprl |
|
72 |
|
simprr |
|
73 |
|
eqid |
|
74 |
1 2 3 4 5 63 64 8 9 10 11 65 66 67 68 39 69 70 71 72 73
|
dchrptlem2 |
|
75 |
74
|
expr |
|
76 |
62 75
|
syl5bir |
|
77 |
76
|
rexlimdva |
|
78 |
61 77
|
mpd |
|