Metamath Proof Explorer


Theorem dchrptlem3

Description: Lemma for dchrpt . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G = DChr N
dchrpt.z Z = /N
dchrpt.d D = Base G
dchrpt.b B = Base Z
dchrpt.1 1 ˙ = 1 Z
dchrpt.n φ N
dchrpt.n1 φ A 1 ˙
dchrpt.u U = Unit Z
dchrpt.h H = mulGrp Z 𝑠 U
dchrpt.m · ˙ = H
dchrpt.s S = k dom W ran n n · ˙ W k
dchrpt.au φ A U
dchrpt.w φ W Word U
dchrpt.2 φ H dom DProd S
dchrpt.3 φ H DProd S = U
Assertion dchrptlem3 φ x D x A 1

Proof

Step Hyp Ref Expression
1 dchrpt.g G = DChr N
2 dchrpt.z Z = /N
3 dchrpt.d D = Base G
4 dchrpt.b B = Base Z
5 dchrpt.1 1 ˙ = 1 Z
6 dchrpt.n φ N
7 dchrpt.n1 φ A 1 ˙
8 dchrpt.u U = Unit Z
9 dchrpt.h H = mulGrp Z 𝑠 U
10 dchrpt.m · ˙ = H
11 dchrpt.s S = k dom W ran n n · ˙ W k
12 dchrpt.au φ A U
13 dchrpt.w φ W Word U
14 dchrpt.2 φ H dom DProd S
15 dchrpt.3 φ H DProd S = U
16 6 nnnn0d φ N 0
17 2 zncrng N 0 Z CRing
18 16 17 syl φ Z CRing
19 crngring Z CRing Z Ring
20 18 19 syl φ Z Ring
21 8 9 unitgrp Z Ring H Grp
22 20 21 syl φ H Grp
23 grpmnd H Grp H Mnd
24 22 23 syl φ H Mnd
25 13 dmexd φ dom W V
26 eqid 0 H = 0 H
27 26 gsumz H Mnd dom W V H a dom W 0 H = 0 H
28 24 25 27 syl2anc φ H a dom W 0 H = 0 H
29 8 9 5 unitgrpid Z Ring 1 ˙ = 0 H
30 20 29 syl φ 1 ˙ = 0 H
31 30 mpteq2dv φ a dom W 1 ˙ = a dom W 0 H
32 31 oveq2d φ H a dom W 1 ˙ = H a dom W 0 H
33 28 32 30 3eqtr4d φ H a dom W 1 ˙ = 1 ˙
34 7 33 neeqtrrd φ A H a dom W 1 ˙
35 zex V
36 35 mptex n n · ˙ W k V
37 36 rnex ran n n · ˙ W k V
38 37 11 dmmpti dom S = dom W
39 38 a1i φ dom S = dom W
40 eqid H dProj S = H dProj S
41 12 15 eleqtrrd φ A H DProd S
42 eqid h i dom W S i | finSupp 0 H h = h i dom W S i | finSupp 0 H h
43 30 adantr φ a dom W 1 ˙ = 0 H
44 14 39 dprdf2 φ S : dom W SubGrp H
45 44 ffvelrnda φ a dom W S a SubGrp H
46 26 subg0cl S a SubGrp H 0 H S a
47 45 46 syl φ a dom W 0 H S a
48 43 47 eqeltrd φ a dom W 1 ˙ S a
49 5 fvexi 1 ˙ V
50 49 a1i φ 1 ˙ V
51 25 50 fczfsuppd φ finSupp 1 ˙ dom W × 1 ˙
52 fconstmpt dom W × 1 ˙ = a dom W 1 ˙
53 52 eqcomi a dom W 1 ˙ = dom W × 1 ˙
54 53 a1i φ a dom W 1 ˙ = dom W × 1 ˙
55 30 eqcomd φ 0 H = 1 ˙
56 51 54 55 3brtr4d φ finSupp 0 H a dom W 1 ˙
57 42 14 39 48 56 dprdwd φ a dom W 1 ˙ h i dom W S i | finSupp 0 H h
58 14 39 40 41 26 42 57 dpjeq φ A = H a dom W 1 ˙ a dom W H dProj S a A = 1 ˙
59 58 necon3abid φ A H a dom W 1 ˙ ¬ a dom W H dProj S a A = 1 ˙
60 34 59 mpbid φ ¬ a dom W H dProj S a A = 1 ˙
61 rexnal a dom W ¬ H dProj S a A = 1 ˙ ¬ a dom W H dProj S a A = 1 ˙
62 60 61 sylibr φ a dom W ¬ H dProj S a A = 1 ˙
63 df-ne H dProj S a A 1 ˙ ¬ H dProj S a A = 1 ˙
64 6 adantr φ a dom W H dProj S a A 1 ˙ N
65 7 adantr φ a dom W H dProj S a A 1 ˙ A 1 ˙
66 12 adantr φ a dom W H dProj S a A 1 ˙ A U
67 13 adantr φ a dom W H dProj S a A 1 ˙ W Word U
68 14 adantr φ a dom W H dProj S a A 1 ˙ H dom DProd S
69 15 adantr φ a dom W H dProj S a A 1 ˙ H DProd S = U
70 eqid od H = od H
71 eqid 1 2 od H W a = 1 2 od H W a
72 simprl φ a dom W H dProj S a A 1 ˙ a dom W
73 simprr φ a dom W H dProj S a A 1 ˙ H dProj S a A 1 ˙
74 eqid u U ι h | m H dProj S a u = m · ˙ W a h = -1 2 od H W a m = u U ι h | m H dProj S a u = m · ˙ W a h = -1 2 od H W a m
75 1 2 3 4 5 64 65 8 9 10 11 66 67 68 69 40 70 71 72 73 74 dchrptlem2 φ a dom W H dProj S a A 1 ˙ x D x A 1
76 75 expr φ a dom W H dProj S a A 1 ˙ x D x A 1
77 63 76 syl5bir φ a dom W ¬ H dProj S a A = 1 ˙ x D x A 1
78 77 rexlimdva φ a dom W ¬ H dProj S a A = 1 ˙ x D x A 1
79 62 78 mpd φ x D x A 1