Metamath Proof Explorer


Theorem dchrrcl

Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses dchrrcl.g G = DChr N
dchrrcl.b D = Base G
Assertion dchrrcl X D N

Proof

Step Hyp Ref Expression
1 dchrrcl.g G = DChr N
2 dchrrcl.b D = Base G
3 df-dchr DChr = n /n / z x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x / b Base ndx b + ndx f × b × b
4 3 dmmptss dom DChr
5 n0i X D ¬ D =
6 ndmfv ¬ N dom DChr DChr N =
7 1 6 syl5eq ¬ N dom DChr G =
8 fveq2 G = Base G = Base
9 base0 = Base
10 8 2 9 3eqtr4g G = D =
11 7 10 syl ¬ N dom DChr D =
12 5 11 nsyl2 X D N dom DChr
13 4 12 sselid X D N