Metamath Proof Explorer


Theorem dchrresb

Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrresb.g G = DChr N
dchrresb.z Z = /N
dchrresb.b D = Base G
dchrresb.u U = Unit Z
dchrresb.x φ X D
dchrresb.Y φ Y D
Assertion dchrresb φ X U = Y U X = Y

Proof

Step Hyp Ref Expression
1 dchrresb.g G = DChr N
2 dchrresb.z Z = /N
3 dchrresb.b D = Base G
4 dchrresb.u U = Unit Z
5 dchrresb.x φ X D
6 dchrresb.Y φ Y D
7 eqid Base Z = Base Z
8 1 2 3 7 5 dchrf φ X : Base Z
9 8 ffnd φ X Fn Base Z
10 1 2 3 7 6 dchrf φ Y : Base Z
11 10 ffnd φ Y Fn Base Z
12 7 4 unitss U Base Z
13 fvreseq X Fn Base Z Y Fn Base Z U Base Z X U = Y U k U X k = Y k
14 12 13 mpan2 X Fn Base Z Y Fn Base Z X U = Y U k U X k = Y k
15 9 11 14 syl2anc φ X U = Y U k U X k = Y k
16 1 2 3 4 5 6 dchreq φ X = Y k U X k = Y k
17 15 16 bitr4d φ X U = Y U X = Y