Metamath Proof Explorer


Theorem dchrval

Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrval.g G = DChr N
dchrval.z Z = /N
dchrval.b B = Base Z
dchrval.u U = Unit Z
dchrval.n φ N
dchrval.d φ D = x mulGrp Z MndHom mulGrp fld | B U × 0 x
Assertion dchrval φ G = Base ndx D + ndx f × D × D

Proof

Step Hyp Ref Expression
1 dchrval.g G = DChr N
2 dchrval.z Z = /N
3 dchrval.b B = Base Z
4 dchrval.u U = Unit Z
5 dchrval.n φ N
6 dchrval.d φ D = x mulGrp Z MndHom mulGrp fld | B U × 0 x
7 df-dchr DChr = n /n / z x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x / b Base ndx b + ndx f × b × b
8 fvexd φ n = N /n V
9 ovex mulGrp z MndHom mulGrp fld V
10 9 rabex x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x V
11 10 a1i φ n = N z = /n x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x V
12 6 ad2antrr φ n = N z = /n D = x mulGrp Z MndHom mulGrp fld | B U × 0 x
13 simpr φ n = N n = N
14 13 fveq2d φ n = N /n = /N
15 2 14 eqtr4id φ n = N Z = /n
16 15 eqeq2d φ n = N z = Z z = /n
17 16 biimpar φ n = N z = /n z = Z
18 17 fveq2d φ n = N z = /n mulGrp z = mulGrp Z
19 18 oveq1d φ n = N z = /n mulGrp z MndHom mulGrp fld = mulGrp Z MndHom mulGrp fld
20 17 fveq2d φ n = N z = /n Base z = Base Z
21 20 3 eqtr4di φ n = N z = /n Base z = B
22 17 fveq2d φ n = N z = /n Unit z = Unit Z
23 22 4 eqtr4di φ n = N z = /n Unit z = U
24 21 23 difeq12d φ n = N z = /n Base z Unit z = B U
25 24 xpeq1d φ n = N z = /n Base z Unit z × 0 = B U × 0
26 25 sseq1d φ n = N z = /n Base z Unit z × 0 x B U × 0 x
27 19 26 rabeqbidv φ n = N z = /n x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x = x mulGrp Z MndHom mulGrp fld | B U × 0 x
28 12 27 eqtr4d φ n = N z = /n D = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x
29 28 eqeq2d φ n = N z = /n b = D b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x
30 29 biimpar φ n = N z = /n b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x b = D
31 30 opeq2d φ n = N z = /n b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x Base ndx b = Base ndx D
32 30 sqxpeqd φ n = N z = /n b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x b × b = D × D
33 32 reseq2d φ n = N z = /n b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x f × b × b = f × D × D
34 33 opeq2d φ n = N z = /n b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x + ndx f × b × b = + ndx f × D × D
35 31 34 preq12d φ n = N z = /n b = x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x Base ndx b + ndx f × b × b = Base ndx D + ndx f × D × D
36 11 35 csbied φ n = N z = /n x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x / b Base ndx b + ndx f × b × b = Base ndx D + ndx f × D × D
37 8 36 csbied φ n = N /n / z x mulGrp z MndHom mulGrp fld | Base z Unit z × 0 x / b Base ndx b + ndx f × b × b = Base ndx D + ndx f × D × D
38 prex Base ndx D + ndx f × D × D V
39 38 a1i φ Base ndx D + ndx f × D × D V
40 7 37 5 39 fvmptd2 φ DChr N = Base ndx D + ndx f × D × D
41 1 40 syl5eq φ G = Base ndx D + ndx f × D × D