Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrvmasumif.f |
|
10 |
|
dchrvmasumif.c |
|
11 |
|
dchrvmasumif.s |
|
12 |
|
dchrvmasumif.1 |
|
13 |
|
dchrvmaeq0.w |
|
14 |
|
eldifsn |
|
15 |
7 8 14
|
sylanbrc |
|
16 |
|
fveq1 |
|
17 |
16
|
oveq1d |
|
18 |
17
|
sumeq2sdv |
|
19 |
18
|
eqeq1d |
|
20 |
19 13
|
elrab2 |
|
21 |
20
|
baib |
|
22 |
15 21
|
syl |
|
23 |
|
nnuz |
|
24 |
|
1zzd |
|
25 |
|
2fveq3 |
|
26 |
|
id |
|
27 |
25 26
|
oveq12d |
|
28 |
|
ovex |
|
29 |
27 9 28
|
fvmpt |
|
30 |
29
|
adantl |
|
31 |
7
|
adantr |
|
32 |
|
nnz |
|
33 |
32
|
adantl |
|
34 |
4 1 5 2 31 33
|
dchrzrhcl |
|
35 |
|
nncn |
|
36 |
35
|
adantl |
|
37 |
|
nnne0 |
|
38 |
37
|
adantl |
|
39 |
34 36 38
|
divcld |
|
40 |
23 24 30 39 11
|
isumclim |
|
41 |
40
|
eqeq1d |
|
42 |
22 41
|
bitrd |
|