Metamath Proof Explorer


Theorem dchrvmaeq0

Description: The set W is the collection of all non-principal Dirichlet characters such that the sum sum_ n e. NN , X ( n ) / n is equal to zero. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasumif.f F = a X L a a
dchrvmasumif.c φ C 0 +∞
dchrvmasumif.s φ seq 1 + F S
dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
dchrvmaeq0.w W = y D 1 ˙ | m y L m m = 0
Assertion dchrvmaeq0 φ X W S = 0

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasumif.f F = a X L a a
10 dchrvmasumif.c φ C 0 +∞
11 dchrvmasumif.s φ seq 1 + F S
12 dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
13 dchrvmaeq0.w W = y D 1 ˙ | m y L m m = 0
14 eldifsn X D 1 ˙ X D X 1 ˙
15 7 8 14 sylanbrc φ X D 1 ˙
16 fveq1 y = X y L m = X L m
17 16 oveq1d y = X y L m m = X L m m
18 17 sumeq2sdv y = X m y L m m = m X L m m
19 18 eqeq1d y = X m y L m m = 0 m X L m m = 0
20 19 13 elrab2 X W X D 1 ˙ m X L m m = 0
21 20 baib X D 1 ˙ X W m X L m m = 0
22 15 21 syl φ X W m X L m m = 0
23 nnuz = 1
24 1zzd φ 1
25 2fveq3 a = m X L a = X L m
26 id a = m a = m
27 25 26 oveq12d a = m X L a a = X L m m
28 ovex X L m m V
29 27 9 28 fvmpt m F m = X L m m
30 29 adantl φ m F m = X L m m
31 7 adantr φ m X D
32 nnz m m
33 32 adantl φ m m
34 4 1 5 2 31 33 dchrzrhcl φ m X L m
35 nncn m m
36 35 adantl φ m m
37 nnne0 m m 0
38 37 adantl φ m m 0
39 34 36 38 divcld φ m X L m m
40 23 24 30 39 11 isumclim φ m X L m m = S
41 40 eqeq1d φ m X L m m = 0 S = 0
42 22 41 bitrd φ X W S = 0