Metamath Proof Explorer


Theorem dchrvmasum2if

Description: Combine the results of dchrvmasumlem1 and dchrvmasum2lem inside a conditional. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasum.a φ A +
dchrvmasum2.2 φ 1 A
Assertion dchrvmasum2if φ n = 1 A X L n Λ n n + if ψ log A 0 = d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasum.a φ A +
10 dchrvmasum2.2 φ 1 A
11 fzfid φ 1 A Fin
12 7 adantr φ d 1 A X D
13 elfzelz d 1 A d
14 13 adantl φ d 1 A d
15 4 1 5 2 12 14 dchrzrhcl φ d 1 A X L d
16 elfznn d 1 A d
17 16 adantl φ d 1 A d
18 mucl d μ d
19 18 zred d μ d
20 nndivre μ d d μ d d
21 19 20 mpancom d μ d d
22 17 21 syl φ d 1 A μ d d
23 22 recnd φ d 1 A μ d d
24 15 23 mulcld φ d 1 A X L d μ d d
25 fzfid φ d 1 A 1 A d Fin
26 12 adantr φ d 1 A m 1 A d X D
27 elfzelz m 1 A d m
28 27 adantl φ d 1 A m 1 A d m
29 4 1 5 2 26 28 dchrzrhcl φ d 1 A m 1 A d X L m
30 elfznn m 1 A d m
31 30 adantl φ d 1 A m 1 A d m
32 31 nnrpd φ d 1 A m 1 A d m +
33 32 relogcld φ d 1 A m 1 A d log m
34 33 31 nndivred φ d 1 A m 1 A d log m m
35 34 recnd φ d 1 A m 1 A d log m m
36 29 35 mulcld φ d 1 A m 1 A d X L m log m m
37 25 36 fsumcl φ d 1 A m = 1 A d X L m log m m
38 24 37 mulcld φ d 1 A X L d μ d d m = 1 A d X L m log m m
39 16 nnrpd d 1 A d +
40 rpdivcl A + d + A d +
41 9 39 40 syl2an φ d 1 A A d +
42 41 adantr φ d 1 A m 1 A d A d +
43 42 32 rpdivcld φ d 1 A m 1 A d A d m +
44 43 relogcld φ d 1 A m 1 A d log A d m
45 44 31 nndivred φ d 1 A m 1 A d log A d m m
46 45 recnd φ d 1 A m 1 A d log A d m m
47 29 46 mulcld φ d 1 A m 1 A d X L m log A d m m
48 25 47 fsumcl φ d 1 A m = 1 A d X L m log A d m m
49 24 48 mulcld φ d 1 A X L d μ d d m = 1 A d X L m log A d m m
50 11 38 49 fsumadd φ d = 1 A X L d μ d d m = 1 A d X L m log m m + X L d μ d d m = 1 A d X L m log A d m m = d = 1 A X L d μ d d m = 1 A d X L m log m m + d = 1 A X L d μ d d m = 1 A d X L m log A d m m
51 42 32 relogdivd φ d 1 A m 1 A d log A d m = log A d log m
52 51 oveq2d φ d 1 A m 1 A d log m + log A d m = log m + log A d - log m
53 33 recnd φ d 1 A m 1 A d log m
54 41 relogcld φ d 1 A log A d
55 54 recnd φ d 1 A log A d
56 55 adantr φ d 1 A m 1 A d log A d
57 53 56 pncan3d φ d 1 A m 1 A d log m + log A d - log m = log A d
58 52 57 eqtr2d φ d 1 A m 1 A d log A d = log m + log A d m
59 58 oveq1d φ d 1 A m 1 A d log A d m = log m + log A d m m
60 44 recnd φ d 1 A m 1 A d log A d m
61 31 nncnd φ d 1 A m 1 A d m
62 31 nnne0d φ d 1 A m 1 A d m 0
63 53 60 61 62 divdird φ d 1 A m 1 A d log m + log A d m m = log m m + log A d m m
64 59 63 eqtrd φ d 1 A m 1 A d log A d m = log m m + log A d m m
65 64 oveq2d φ d 1 A m 1 A d X L m log A d m = X L m log m m + log A d m m
66 29 35 46 adddid φ d 1 A m 1 A d X L m log m m + log A d m m = X L m log m m + X L m log A d m m
67 65 66 eqtrd φ d 1 A m 1 A d X L m log A d m = X L m log m m + X L m log A d m m
68 67 sumeq2dv φ d 1 A m = 1 A d X L m log A d m = m = 1 A d X L m log m m + X L m log A d m m
69 25 36 47 fsumadd φ d 1 A m = 1 A d X L m log m m + X L m log A d m m = m = 1 A d X L m log m m + m = 1 A d X L m log A d m m
70 68 69 eqtrd φ d 1 A m = 1 A d X L m log A d m = m = 1 A d X L m log m m + m = 1 A d X L m log A d m m
71 70 oveq2d φ d 1 A X L d μ d d m = 1 A d X L m log A d m = X L d μ d d m = 1 A d X L m log m m + m = 1 A d X L m log A d m m
72 24 37 48 adddid φ d 1 A X L d μ d d m = 1 A d X L m log m m + m = 1 A d X L m log A d m m = X L d μ d d m = 1 A d X L m log m m + X L d μ d d m = 1 A d X L m log A d m m
73 71 72 eqtrd φ d 1 A X L d μ d d m = 1 A d X L m log A d m = X L d μ d d m = 1 A d X L m log m m + X L d μ d d m = 1 A d X L m log A d m m
74 73 sumeq2dv φ d = 1 A X L d μ d d m = 1 A d X L m log A d m = d = 1 A X L d μ d d m = 1 A d X L m log m m + X L d μ d d m = 1 A d X L m log A d m m
75 1 2 3 4 5 6 7 8 9 dchrvmasumlem1 φ n = 1 A X L n Λ n n = d = 1 A X L d μ d d m = 1 A d X L m log m m
76 1 2 3 4 5 6 7 8 9 10 dchrvmasum2lem φ log A = d = 1 A X L d μ d d m = 1 A d X L m log A d m m
77 75 76 oveq12d φ n = 1 A X L n Λ n n + log A = d = 1 A X L d μ d d m = 1 A d X L m log m m + d = 1 A X L d μ d d m = 1 A d X L m log A d m m
78 50 74 77 3eqtr4rd φ n = 1 A X L n Λ n n + log A = d = 1 A X L d μ d d m = 1 A d X L m log A d m
79 78 adantr φ ψ n = 1 A X L n Λ n n + log A = d = 1 A X L d μ d d m = 1 A d X L m log A d m
80 iftrue ψ if ψ log A 0 = log A
81 80 oveq2d ψ n = 1 A X L n Λ n n + if ψ log A 0 = n = 1 A X L n Λ n n + log A
82 81 adantl φ ψ n = 1 A X L n Λ n n + if ψ log A 0 = n = 1 A X L n Λ n n + log A
83 iftrue ψ if ψ A d m = A d
84 83 fveq2d ψ log if ψ A d m = log A d
85 84 oveq1d ψ log if ψ A d m m = log A d m
86 85 oveq2d ψ X L m log if ψ A d m m = X L m log A d m
87 86 sumeq2sdv ψ m = 1 A d X L m log if ψ A d m m = m = 1 A d X L m log A d m
88 87 oveq2d ψ X L d μ d d m = 1 A d X L m log if ψ A d m m = X L d μ d d m = 1 A d X L m log A d m
89 88 sumeq2sdv ψ d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m = d = 1 A X L d μ d d m = 1 A d X L m log A d m
90 89 adantl φ ψ d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m = d = 1 A X L d μ d d m = 1 A d X L m log A d m
91 79 82 90 3eqtr4d φ ψ n = 1 A X L n Λ n n + if ψ log A 0 = d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m
92 7 adantr φ n 1 A X D
93 elfzelz n 1 A n
94 93 adantl φ n 1 A n
95 4 1 5 2 92 94 dchrzrhcl φ n 1 A X L n
96 elfznn n 1 A n
97 96 adantl φ n 1 A n
98 vmacl n Λ n
99 nndivre Λ n n Λ n n
100 98 99 mpancom n Λ n n
101 100 recnd n Λ n n
102 97 101 syl φ n 1 A Λ n n
103 95 102 mulcld φ n 1 A X L n Λ n n
104 11 103 fsumcl φ n = 1 A X L n Λ n n
105 104 adantr φ ¬ ψ n = 1 A X L n Λ n n
106 105 addid1d φ ¬ ψ n = 1 A X L n Λ n n + 0 = n = 1 A X L n Λ n n
107 iffalse ¬ ψ if ψ log A 0 = 0
108 107 adantl φ ¬ ψ if ψ log A 0 = 0
109 108 oveq2d φ ¬ ψ n = 1 A X L n Λ n n + if ψ log A 0 = n = 1 A X L n Λ n n + 0
110 iffalse ¬ ψ if ψ A d m = m
111 110 fveq2d ¬ ψ log if ψ A d m = log m
112 111 oveq1d ¬ ψ log if ψ A d m m = log m m
113 112 oveq2d ¬ ψ X L m log if ψ A d m m = X L m log m m
114 113 sumeq2sdv ¬ ψ m = 1 A d X L m log if ψ A d m m = m = 1 A d X L m log m m
115 114 oveq2d ¬ ψ X L d μ d d m = 1 A d X L m log if ψ A d m m = X L d μ d d m = 1 A d X L m log m m
116 115 sumeq2sdv ¬ ψ d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m = d = 1 A X L d μ d d m = 1 A d X L m log m m
117 75 eqcomd φ d = 1 A X L d μ d d m = 1 A d X L m log m m = n = 1 A X L n Λ n n
118 116 117 sylan9eqr φ ¬ ψ d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m = n = 1 A X L n Λ n n
119 106 109 118 3eqtr4d φ ¬ ψ n = 1 A X L n Λ n n + if ψ log A 0 = d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m
120 91 119 pm2.61dan φ n = 1 A X L n Λ n n + if ψ log A 0 = d = 1 A X L d μ d d m = 1 A d X L m log if ψ A d m m