Metamath Proof Explorer


Theorem dchrvmasum2lem

Description: Give an expression for log x remarkably similar to sum_ n <_ x ( X ( n ) Lam ( n ) / n ) given in dchrvmasumlem1 . Part of Lemma 9.4.3 of Shapiro, p. 380. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasum.a φ A +
dchrvmasum2.2 φ 1 A
Assertion dchrvmasum2lem φ log A = d = 1 A X L d μ d d m = 1 A d X L m log A d m m

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasum.a φ A +
10 dchrvmasum2.2 φ 1 A
11 2fveq3 n = d m X L n = X L d m
12 id n = d m n = d m
13 11 12 oveq12d n = d m X L n n = X L d m d m
14 oveq2 n = d m A n = A d m
15 14 fveq2d n = d m log A n = log A d m
16 13 15 oveq12d n = d m X L n n log A n = X L d m d m log A d m
17 16 oveq2d n = d m μ d X L n n log A n = μ d X L d m d m log A d m
18 9 rpred φ A
19 elrabi d x | x n d
20 19 ad2antll φ n 1 A d x | x n d
21 mucl d μ d
22 20 21 syl φ n 1 A d x | x n μ d
23 22 zcnd φ n 1 A d x | x n μ d
24 7 adantr φ n 1 A X D
25 elfzelz n 1 A n
26 25 adantl φ n 1 A n
27 4 1 5 2 24 26 dchrzrhcl φ n 1 A X L n
28 elfznn n 1 A n
29 28 adantl φ n 1 A n
30 29 nncnd φ n 1 A n
31 29 nnne0d φ n 1 A n 0
32 27 30 31 divcld φ n 1 A X L n n
33 28 nnrpd n 1 A n +
34 rpdivcl A + n + A n +
35 9 33 34 syl2an φ n 1 A A n +
36 35 relogcld φ n 1 A log A n
37 36 recnd φ n 1 A log A n
38 32 37 mulcld φ n 1 A X L n n log A n
39 38 adantrr φ n 1 A d x | x n X L n n log A n
40 23 39 mulcld φ n 1 A d x | x n μ d X L n n log A n
41 17 18 40 dvdsflsumcom φ n = 1 A d x | x n μ d X L n n log A n = d = 1 A m = 1 A d μ d X L d m d m log A d m
42 2fveq3 n = 1 X L n = X L 1
43 id n = 1 n = 1
44 42 43 oveq12d n = 1 X L n n = X L 1 1
45 oveq2 n = 1 A n = A 1
46 45 fveq2d n = 1 log A n = log A 1
47 44 46 oveq12d n = 1 X L n n log A n = X L 1 1 log A 1
48 fzfid φ 1 A Fin
49 fz1ssnn 1 A
50 49 a1i φ 1 A
51 flge1nn A 1 A A
52 18 10 51 syl2anc φ A
53 nnuz = 1
54 52 53 eleqtrdi φ A 1
55 eluzfz1 A 1 1 1 A
56 54 55 syl φ 1 1 A
57 47 48 50 56 38 musumsum φ n = 1 A d x | x n μ d X L n n log A n = X L 1 1 log A 1
58 4 1 5 2 7 dchrzrh1 φ X L 1 = 1
59 58 oveq1d φ X L 1 1 = 1 1
60 1div1e1 1 1 = 1
61 59 60 eqtrdi φ X L 1 1 = 1
62 9 rpcnd φ A
63 62 div1d φ A 1 = A
64 63 fveq2d φ log A 1 = log A
65 61 64 oveq12d φ X L 1 1 log A 1 = 1 log A
66 9 relogcld φ log A
67 66 recnd φ log A
68 67 mulid2d φ 1 log A = log A
69 57 65 68 3eqtrrd φ log A = n = 1 A d x | x n μ d X L n n log A n
70 fzfid φ d 1 A 1 A d Fin
71 7 adantr φ d 1 A X D
72 elfzelz d 1 A d
73 72 adantl φ d 1 A d
74 4 1 5 2 71 73 dchrzrhcl φ d 1 A X L d
75 fznnfl A d 1 A d d A
76 18 75 syl φ d 1 A d d A
77 76 simprbda φ d 1 A d
78 77 21 syl φ d 1 A μ d
79 78 zred φ d 1 A μ d
80 79 77 nndivred φ d 1 A μ d d
81 80 recnd φ d 1 A μ d d
82 74 81 mulcld φ d 1 A X L d μ d d
83 7 ad2antrr φ d 1 A m 1 A d X D
84 elfzelz m 1 A d m
85 84 adantl φ d 1 A m 1 A d m
86 4 1 5 2 83 85 dchrzrhcl φ d 1 A m 1 A d X L m
87 elfznn d 1 A d
88 87 nnrpd d 1 A d +
89 rpdivcl A + d + A d +
90 9 88 89 syl2an φ d 1 A A d +
91 elfznn m 1 A d m
92 91 nnrpd m 1 A d m +
93 rpdivcl A d + m + A d m +
94 90 92 93 syl2an φ d 1 A m 1 A d A d m +
95 94 relogcld φ d 1 A m 1 A d log A d m
96 91 adantl φ d 1 A m 1 A d m
97 95 96 nndivred φ d 1 A m 1 A d log A d m m
98 97 recnd φ d 1 A m 1 A d log A d m m
99 86 98 mulcld φ d 1 A m 1 A d X L m log A d m m
100 70 82 99 fsummulc2 φ d 1 A X L d μ d d m = 1 A d X L m log A d m m = m = 1 A d X L d μ d d X L m log A d m m
101 74 adantr φ d 1 A m 1 A d X L d
102 79 adantr φ d 1 A m 1 A d μ d
103 102 recnd φ d 1 A m 1 A d μ d
104 77 nnrpd φ d 1 A d +
105 104 adantr φ d 1 A m 1 A d d +
106 105 rpcnne0d φ d 1 A m 1 A d d d 0
107 div12 X L d μ d d d 0 X L d μ d d = μ d X L d d
108 101 103 106 107 syl3anc φ d 1 A m 1 A d X L d μ d d = μ d X L d d
109 95 recnd φ d 1 A m 1 A d log A d m
110 96 nnrpd φ d 1 A m 1 A d m +
111 110 rpcnne0d φ d 1 A m 1 A d m m 0
112 div12 X L m log A d m m m 0 X L m log A d m m = log A d m X L m m
113 86 109 111 112 syl3anc φ d 1 A m 1 A d X L m log A d m m = log A d m X L m m
114 108 113 oveq12d φ d 1 A m 1 A d X L d μ d d X L m log A d m m = μ d X L d d log A d m X L m m
115 105 rpcnd φ d 1 A m 1 A d d
116 105 rpne0d φ d 1 A m 1 A d d 0
117 101 115 116 divcld φ d 1 A m 1 A d X L d d
118 96 nncnd φ d 1 A m 1 A d m
119 96 nnne0d φ d 1 A m 1 A d m 0
120 86 118 119 divcld φ d 1 A m 1 A d X L m m
121 117 120 mulcld φ d 1 A m 1 A d X L d d X L m m
122 103 109 121 mulassd φ d 1 A m 1 A d μ d log A d m X L d d X L m m = μ d log A d m X L d d X L m m
123 103 117 109 120 mul4d φ d 1 A m 1 A d μ d X L d d log A d m X L m m = μ d log A d m X L d d X L m m
124 72 ad2antlr φ d 1 A m 1 A d d
125 4 1 5 2 83 124 85 dchrzrhmul φ d 1 A m 1 A d X L d m = X L d X L m
126 125 oveq1d φ d 1 A m 1 A d X L d m d m = X L d X L m d m
127 divmuldiv X L d X L m d d 0 m m 0 X L d d X L m m = X L d X L m d m
128 101 86 106 111 127 syl22anc φ d 1 A m 1 A d X L d d X L m m = X L d X L m d m
129 126 128 eqtr4d φ d 1 A m 1 A d X L d m d m = X L d d X L m m
130 62 ad2antrr φ d 1 A m 1 A d A
131 divdiv1 A d d 0 m m 0 A d m = A d m
132 130 106 111 131 syl3anc φ d 1 A m 1 A d A d m = A d m
133 132 eqcomd φ d 1 A m 1 A d A d m = A d m
134 133 fveq2d φ d 1 A m 1 A d log A d m = log A d m
135 129 134 oveq12d φ d 1 A m 1 A d X L d m d m log A d m = X L d d X L m m log A d m
136 121 109 mulcomd φ d 1 A m 1 A d X L d d X L m m log A d m = log A d m X L d d X L m m
137 135 136 eqtrd φ d 1 A m 1 A d X L d m d m log A d m = log A d m X L d d X L m m
138 137 oveq2d φ d 1 A m 1 A d μ d X L d m d m log A d m = μ d log A d m X L d d X L m m
139 122 123 138 3eqtr4d φ d 1 A m 1 A d μ d X L d d log A d m X L m m = μ d X L d m d m log A d m
140 114 139 eqtrd φ d 1 A m 1 A d X L d μ d d X L m log A d m m = μ d X L d m d m log A d m
141 140 sumeq2dv φ d 1 A m = 1 A d X L d μ d d X L m log A d m m = m = 1 A d μ d X L d m d m log A d m
142 100 141 eqtrd φ d 1 A X L d μ d d m = 1 A d X L m log A d m m = m = 1 A d μ d X L d m d m log A d m
143 142 sumeq2dv φ d = 1 A X L d μ d d m = 1 A d X L m log A d m m = d = 1 A m = 1 A d μ d X L d m d m log A d m
144 41 69 143 3eqtr4d φ log A = d = 1 A X L d μ d d m = 1 A d X L m log A d m m