Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrvmasum.a |
|
10 |
|
dchrvmasum2.2 |
|
11 |
|
2fveq3 |
|
12 |
|
id |
|
13 |
11 12
|
oveq12d |
|
14 |
|
oveq2 |
|
15 |
14
|
fveq2d |
|
16 |
13 15
|
oveq12d |
|
17 |
16
|
oveq2d |
|
18 |
9
|
rpred |
|
19 |
|
elrabi |
|
20 |
19
|
ad2antll |
|
21 |
|
mucl |
|
22 |
20 21
|
syl |
|
23 |
22
|
zcnd |
|
24 |
7
|
adantr |
|
25 |
|
elfzelz |
|
26 |
25
|
adantl |
|
27 |
4 1 5 2 24 26
|
dchrzrhcl |
|
28 |
|
elfznn |
|
29 |
28
|
adantl |
|
30 |
29
|
nncnd |
|
31 |
29
|
nnne0d |
|
32 |
27 30 31
|
divcld |
|
33 |
28
|
nnrpd |
|
34 |
|
rpdivcl |
|
35 |
9 33 34
|
syl2an |
|
36 |
35
|
relogcld |
|
37 |
36
|
recnd |
|
38 |
32 37
|
mulcld |
|
39 |
38
|
adantrr |
|
40 |
23 39
|
mulcld |
|
41 |
17 18 40
|
dvdsflsumcom |
|
42 |
|
2fveq3 |
|
43 |
|
id |
|
44 |
42 43
|
oveq12d |
|
45 |
|
oveq2 |
|
46 |
45
|
fveq2d |
|
47 |
44 46
|
oveq12d |
|
48 |
|
fzfid |
|
49 |
|
fz1ssnn |
|
50 |
49
|
a1i |
|
51 |
|
flge1nn |
|
52 |
18 10 51
|
syl2anc |
|
53 |
|
nnuz |
|
54 |
52 53
|
eleqtrdi |
|
55 |
|
eluzfz1 |
|
56 |
54 55
|
syl |
|
57 |
47 48 50 56 38
|
musumsum |
|
58 |
4 1 5 2 7
|
dchrzrh1 |
|
59 |
58
|
oveq1d |
|
60 |
|
1div1e1 |
|
61 |
59 60
|
eqtrdi |
|
62 |
9
|
rpcnd |
|
63 |
62
|
div1d |
|
64 |
63
|
fveq2d |
|
65 |
61 64
|
oveq12d |
|
66 |
9
|
relogcld |
|
67 |
66
|
recnd |
|
68 |
67
|
mulid2d |
|
69 |
57 65 68
|
3eqtrrd |
|
70 |
|
fzfid |
|
71 |
7
|
adantr |
|
72 |
|
elfzelz |
|
73 |
72
|
adantl |
|
74 |
4 1 5 2 71 73
|
dchrzrhcl |
|
75 |
|
fznnfl |
|
76 |
18 75
|
syl |
|
77 |
76
|
simprbda |
|
78 |
77 21
|
syl |
|
79 |
78
|
zred |
|
80 |
79 77
|
nndivred |
|
81 |
80
|
recnd |
|
82 |
74 81
|
mulcld |
|
83 |
7
|
ad2antrr |
|
84 |
|
elfzelz |
|
85 |
84
|
adantl |
|
86 |
4 1 5 2 83 85
|
dchrzrhcl |
|
87 |
|
elfznn |
|
88 |
87
|
nnrpd |
|
89 |
|
rpdivcl |
|
90 |
9 88 89
|
syl2an |
|
91 |
|
elfznn |
|
92 |
91
|
nnrpd |
|
93 |
|
rpdivcl |
|
94 |
90 92 93
|
syl2an |
|
95 |
94
|
relogcld |
|
96 |
91
|
adantl |
|
97 |
95 96
|
nndivred |
|
98 |
97
|
recnd |
|
99 |
86 98
|
mulcld |
|
100 |
70 82 99
|
fsummulc2 |
|
101 |
74
|
adantr |
|
102 |
79
|
adantr |
|
103 |
102
|
recnd |
|
104 |
77
|
nnrpd |
|
105 |
104
|
adantr |
|
106 |
105
|
rpcnne0d |
|
107 |
|
div12 |
|
108 |
101 103 106 107
|
syl3anc |
|
109 |
95
|
recnd |
|
110 |
96
|
nnrpd |
|
111 |
110
|
rpcnne0d |
|
112 |
|
div12 |
|
113 |
86 109 111 112
|
syl3anc |
|
114 |
108 113
|
oveq12d |
|
115 |
105
|
rpcnd |
|
116 |
105
|
rpne0d |
|
117 |
101 115 116
|
divcld |
|
118 |
96
|
nncnd |
|
119 |
96
|
nnne0d |
|
120 |
86 118 119
|
divcld |
|
121 |
117 120
|
mulcld |
|
122 |
103 109 121
|
mulassd |
|
123 |
103 117 109 120
|
mul4d |
|
124 |
72
|
ad2antlr |
|
125 |
4 1 5 2 83 124 85
|
dchrzrhmul |
|
126 |
125
|
oveq1d |
|
127 |
|
divmuldiv |
|
128 |
101 86 106 111 127
|
syl22anc |
|
129 |
126 128
|
eqtr4d |
|
130 |
62
|
ad2antrr |
|
131 |
|
divdiv1 |
|
132 |
130 106 111 131
|
syl3anc |
|
133 |
132
|
eqcomd |
|
134 |
133
|
fveq2d |
|
135 |
129 134
|
oveq12d |
|
136 |
121 109
|
mulcomd |
|
137 |
135 136
|
eqtrd |
|
138 |
137
|
oveq2d |
|
139 |
122 123 138
|
3eqtr4d |
|
140 |
114 139
|
eqtrd |
|
141 |
140
|
sumeq2dv |
|
142 |
100 141
|
eqtrd |
|
143 |
142
|
sumeq2dv |
|
144 |
41 69 143
|
3eqtr4d |
|