Metamath Proof Explorer


Theorem dchrvmasumlem1

Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of Shapiro, p. 377. (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasum.a φ A +
Assertion dchrvmasumlem1 φ n = 1 A X L n Λ n n = d = 1 A X L d μ d d m = 1 A d X L m log m m

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasum.a φ A +
10 2fveq3 n = d m X L n = X L d m
11 oveq2 n = d m μ d n = μ d d m
12 fvoveq1 n = d m log n d = log d m d
13 11 12 oveq12d n = d m μ d n log n d = μ d d m log d m d
14 10 13 oveq12d n = d m X L n μ d n log n d = X L d m μ d d m log d m d
15 9 rpred φ A
16 7 adantr φ n 1 A X D
17 elfzelz n 1 A n
18 17 adantl φ n 1 A n
19 4 1 5 2 16 18 dchrzrhcl φ n 1 A X L n
20 19 adantrr φ n 1 A d x | x n X L n
21 elrabi d x | x n d
22 21 ad2antll φ n 1 A d x | x n d
23 mucl d μ d
24 22 23 syl φ n 1 A d x | x n μ d
25 24 zred φ n 1 A d x | x n μ d
26 elfznn n 1 A n
27 26 ad2antrl φ n 1 A d x | x n n
28 25 27 nndivred φ n 1 A d x | x n μ d n
29 28 recnd φ n 1 A d x | x n μ d n
30 27 nnrpd φ n 1 A d x | x n n +
31 22 nnrpd φ n 1 A d x | x n d +
32 30 31 rpdivcld φ n 1 A d x | x n n d +
33 32 relogcld φ n 1 A d x | x n log n d
34 33 recnd φ n 1 A d x | x n log n d
35 29 34 mulcld φ n 1 A d x | x n μ d n log n d
36 20 35 mulcld φ n 1 A d x | x n X L n μ d n log n d
37 14 15 36 dvdsflsumcom φ n = 1 A d x | x n X L n μ d n log n d = d = 1 A m = 1 A d X L d m μ d d m log d m d
38 vmaf Λ :
39 38 a1i φ Λ :
40 ax-resscn
41 fss Λ : Λ :
42 39 40 41 sylancl φ Λ :
43 vmasum m i x | x m Λ i = log m
44 43 adantl φ m i x | x m Λ i = log m
45 44 eqcomd φ m log m = i x | x m Λ i
46 45 mpteq2dva φ m log m = m i x | x m Λ i
47 42 46 muinv φ Λ = n d x | x n μ d m log m n d
48 47 fveq1d φ Λ n = n d x | x n μ d m log m n d n
49 sumex d x | x n μ d m log m n d V
50 eqid n d x | x n μ d m log m n d = n d x | x n μ d m log m n d
51 50 fvmpt2 n d x | x n μ d m log m n d V n d x | x n μ d m log m n d n = d x | x n μ d m log m n d
52 26 49 51 sylancl n 1 A n d x | x n μ d m log m n d n = d x | x n μ d m log m n d
53 48 52 sylan9eq φ n 1 A Λ n = d x | x n μ d m log m n d
54 breq1 x = d x n d n
55 54 elrab d x | x n d d n
56 55 simprbi d x | x n d n
57 56 adantl φ n 1 A d x | x n d n
58 26 adantl φ n 1 A n
59 nndivdvds n d d n n d
60 58 21 59 syl2an φ n 1 A d x | x n d n n d
61 57 60 mpbid φ n 1 A d x | x n n d
62 fveq2 m = n d log m = log n d
63 eqid m log m = m log m
64 fvex log n d V
65 62 63 64 fvmpt n d m log m n d = log n d
66 61 65 syl φ n 1 A d x | x n m log m n d = log n d
67 66 oveq2d φ n 1 A d x | x n μ d m log m n d = μ d log n d
68 67 sumeq2dv φ n 1 A d x | x n μ d m log m n d = d x | x n μ d log n d
69 53 68 eqtrd φ n 1 A Λ n = d x | x n μ d log n d
70 69 oveq1d φ n 1 A Λ n n = d x | x n μ d log n d n
71 fzfid φ n 1 A 1 n Fin
72 dvdsssfz1 n x | x n 1 n
73 58 72 syl φ n 1 A x | x n 1 n
74 71 73 ssfid φ n 1 A x | x n Fin
75 58 nncnd φ n 1 A n
76 24 zcnd φ n 1 A d x | x n μ d
77 76 anassrs φ n 1 A d x | x n μ d
78 34 anassrs φ n 1 A d x | x n log n d
79 77 78 mulcld φ n 1 A d x | x n μ d log n d
80 58 nnne0d φ n 1 A n 0
81 74 75 79 80 fsumdivc φ n 1 A d x | x n μ d log n d n = d x | x n μ d log n d n
82 21 adantl φ n 1 A d x | x n d
83 82 23 syl φ n 1 A d x | x n μ d
84 83 zcnd φ n 1 A d x | x n μ d
85 75 adantr φ n 1 A d x | x n n
86 80 adantr φ n 1 A d x | x n n 0
87 84 78 85 86 div23d φ n 1 A d x | x n μ d log n d n = μ d n log n d
88 87 sumeq2dv φ n 1 A d x | x n μ d log n d n = d x | x n μ d n log n d
89 70 81 88 3eqtrd φ n 1 A Λ n n = d x | x n μ d n log n d
90 89 oveq2d φ n 1 A X L n Λ n n = X L n d x | x n μ d n log n d
91 35 anassrs φ n 1 A d x | x n μ d n log n d
92 74 19 91 fsummulc2 φ n 1 A X L n d x | x n μ d n log n d = d x | x n X L n μ d n log n d
93 90 92 eqtrd φ n 1 A X L n Λ n n = d x | x n X L n μ d n log n d
94 93 sumeq2dv φ n = 1 A X L n Λ n n = n = 1 A d x | x n X L n μ d n log n d
95 fzfid φ d 1 A 1 A d Fin
96 7 adantr φ d 1 A X D
97 elfzelz d 1 A d
98 97 adantl φ d 1 A d
99 4 1 5 2 96 98 dchrzrhcl φ d 1 A X L d
100 fznnfl A d 1 A d d A
101 15 100 syl φ d 1 A d d A
102 101 simprbda φ d 1 A d
103 102 23 syl φ d 1 A μ d
104 103 zred φ d 1 A μ d
105 104 102 nndivred φ d 1 A μ d d
106 105 recnd φ d 1 A μ d d
107 99 106 mulcld φ d 1 A X L d μ d d
108 7 ad2antrr φ d 1 A m 1 A d X D
109 elfzelz m 1 A d m
110 109 adantl φ d 1 A m 1 A d m
111 4 1 5 2 108 110 dchrzrhcl φ d 1 A m 1 A d X L m
112 elfznn m 1 A d m
113 112 adantl φ d 1 A m 1 A d m
114 113 nnrpd φ d 1 A m 1 A d m +
115 114 relogcld φ d 1 A m 1 A d log m
116 115 113 nndivred φ d 1 A m 1 A d log m m
117 116 recnd φ d 1 A m 1 A d log m m
118 111 117 mulcld φ d 1 A m 1 A d X L m log m m
119 95 107 118 fsummulc2 φ d 1 A X L d μ d d m = 1 A d X L m log m m = m = 1 A d X L d μ d d X L m log m m
120 99 adantr φ d 1 A m 1 A d X L d
121 106 adantr φ d 1 A m 1 A d μ d d
122 120 121 111 117 mul4d φ d 1 A m 1 A d X L d μ d d X L m log m m = X L d X L m μ d d log m m
123 97 ad2antlr φ d 1 A m 1 A d d
124 4 1 5 2 108 123 110 dchrzrhmul φ d 1 A m 1 A d X L d m = X L d X L m
125 104 adantr φ d 1 A m 1 A d μ d
126 125 recnd φ d 1 A m 1 A d μ d
127 115 recnd φ d 1 A m 1 A d log m
128 102 nnrpd φ d 1 A d +
129 128 adantr φ d 1 A m 1 A d d +
130 129 114 rpmulcld φ d 1 A m 1 A d d m +
131 130 rpcnne0d φ d 1 A m 1 A d d m d m 0
132 div23 μ d log m d m d m 0 μ d log m d m = μ d d m log m
133 126 127 131 132 syl3anc φ d 1 A m 1 A d μ d log m d m = μ d d m log m
134 129 rpcnne0d φ d 1 A m 1 A d d d 0
135 114 rpcnne0d φ d 1 A m 1 A d m m 0
136 divmuldiv μ d log m d d 0 m m 0 μ d d log m m = μ d log m d m
137 126 127 134 135 136 syl22anc φ d 1 A m 1 A d μ d d log m m = μ d log m d m
138 113 nncnd φ d 1 A m 1 A d m
139 129 rpcnd φ d 1 A m 1 A d d
140 129 rpne0d φ d 1 A m 1 A d d 0
141 138 139 140 divcan3d φ d 1 A m 1 A d d m d = m
142 141 fveq2d φ d 1 A m 1 A d log d m d = log m
143 142 oveq2d φ d 1 A m 1 A d μ d d m log d m d = μ d d m log m
144 133 137 143 3eqtr4rd φ d 1 A m 1 A d μ d d m log d m d = μ d d log m m
145 124 144 oveq12d φ d 1 A m 1 A d X L d m μ d d m log d m d = X L d X L m μ d d log m m
146 122 145 eqtr4d φ d 1 A m 1 A d X L d μ d d X L m log m m = X L d m μ d d m log d m d
147 146 sumeq2dv φ d 1 A m = 1 A d X L d μ d d X L m log m m = m = 1 A d X L d m μ d d m log d m d
148 119 147 eqtrd φ d 1 A X L d μ d d m = 1 A d X L m log m m = m = 1 A d X L d m μ d d m log d m d
149 148 sumeq2dv φ d = 1 A X L d μ d d m = 1 A d X L m log m m = d = 1 A m = 1 A d X L d m μ d d m log d m d
150 37 94 149 3eqtr4d φ n = 1 A X L n Λ n n = d = 1 A X L d μ d d m = 1 A d X L m log m m