Metamath Proof Explorer


Theorem dchrvmasumlem2

Description: Lemma for dchrvmasum . (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasum.f φ m + F
dchrvmasum.g m = x d F = K
dchrvmasum.c φ C 0 +∞
dchrvmasum.t φ T
dchrvmasum.1 φ m 3 +∞ F T C log m m
dchrvmasum.r φ R
dchrvmasum.2 φ m 1 3 F T R
Assertion dchrvmasumlem2 φ x + d = 1 x K T d 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasum.f φ m + F
10 dchrvmasum.g m = x d F = K
11 dchrvmasum.c φ C 0 +∞
12 dchrvmasum.t φ T
13 dchrvmasum.1 φ m 3 +∞ F T C log m m
14 dchrvmasum.r φ R
15 dchrvmasum.2 φ m 1 3 F T R
16 1red φ 1
17 elrege0 C 0 +∞ C 0 C
18 11 17 sylib φ C 0 C
19 18 simpld φ C
20 19 adantr φ x + C
21 fzfid φ x + 1 x Fin
22 simpr φ x + x +
23 elfznn d 1 x d
24 23 nnrpd d 1 x d +
25 rpdivcl x + d + x d +
26 22 24 25 syl2an φ x + d 1 x x d +
27 26 relogcld φ x + d 1 x log x d
28 22 adantr φ x + d 1 x x +
29 27 28 rerpdivcld φ x + d 1 x log x d x
30 21 29 fsumrecl φ x + d = 1 x log x d x
31 20 30 remulcld φ x + C d = 1 x log x d x
32 3nn 3
33 nnrp 3 3 +
34 relogcl 3 + log 3
35 32 33 34 mp2b log 3
36 1re 1
37 35 36 readdcli log 3 + 1
38 remulcl R log 3 + 1 R log 3 + 1
39 14 37 38 sylancl φ R log 3 + 1
40 39 adantr φ x + R log 3 + 1
41 rpssre +
42 19 recnd φ C
43 o1const + C x + C 𝑂1
44 41 42 43 sylancr φ x + C 𝑂1
45 logfacrlim2 x + d = 1 x log x d x 1
46 rlimo1 x + d = 1 x log x d x 1 x + d = 1 x log x d x 𝑂1
47 45 46 mp1i φ x + d = 1 x log x d x 𝑂1
48 20 30 44 47 o1mul2 φ x + C d = 1 x log x d x 𝑂1
49 39 recnd φ R log 3 + 1
50 o1const + R log 3 + 1 x + R log 3 + 1 𝑂1
51 41 49 50 sylancr φ x + R log 3 + 1 𝑂1
52 31 40 48 51 o1add2 φ x + C d = 1 x log x d x + R log 3 + 1 𝑂1
53 31 40 readdcld φ x + C d = 1 x log x d x + R log 3 + 1
54 10 eleq1d m = x d F K
55 9 ralrimiva φ m + F
56 55 ad2antrr φ x + d 1 x m + F
57 54 56 26 rspcdva φ x + d 1 x K
58 12 ad2antrr φ x + d 1 x T
59 57 58 subcld φ x + d 1 x K T
60 59 abscld φ x + d 1 x K T
61 23 adantl φ x + d 1 x d
62 60 61 nndivred φ x + d 1 x K T d
63 21 62 fsumrecl φ x + d = 1 x K T d
64 63 recnd φ x + d = 1 x K T d
65 61 nnrpd φ x + d 1 x d +
66 59 absge0d φ x + d 1 x 0 K T
67 60 65 66 divge0d φ x + d 1 x 0 K T d
68 21 62 67 fsumge0 φ x + 0 d = 1 x K T d
69 63 68 absidd φ x + d = 1 x K T d = d = 1 x K T d
70 69 63 eqeltrd φ x + d = 1 x K T d
71 53 recnd φ x + C d = 1 x log x d x + R log 3 + 1
72 71 abscld φ x + C d = 1 x log x d x + R log 3 + 1
73 3re 3
74 73 a1i φ x + 3
75 1le3 1 3
76 74 75 jctir φ x + 3 1 3
77 14 adantr φ x + R
78 36 rexri 1 *
79 73 rexri 3 *
80 1lt3 1 < 3
81 lbico1 1 * 3 * 1 < 3 1 1 3
82 78 79 80 81 mp3an 1 1 3
83 0red φ m 1 3 0
84 elico2 1 3 * m 1 3 m 1 m m < 3
85 36 79 84 mp2an m 1 3 m 1 m m < 3
86 85 simp1bi m 1 3 m
87 0red m 1 3 0
88 1red m 1 3 1
89 0lt1 0 < 1
90 89 a1i m 1 3 0 < 1
91 85 simp2bi m 1 3 1 m
92 87 88 86 90 91 ltletrd m 1 3 0 < m
93 86 92 elrpd m 1 3 m +
94 12 adantr φ m + T
95 9 94 subcld φ m + F T
96 95 abscld φ m + F T
97 93 96 sylan2 φ m 1 3 F T
98 14 adantr φ m 1 3 R
99 95 absge0d φ m + 0 F T
100 93 99 sylan2 φ m 1 3 0 F T
101 15 r19.21bi φ m 1 3 F T R
102 83 97 98 100 101 letrd φ m 1 3 0 R
103 102 ralrimiva φ m 1 3 0 R
104 biidd m = 1 0 R 0 R
105 104 rspcv 1 1 3 m 1 3 0 R 0 R
106 82 103 105 mpsyl φ 0 R
107 106 adantr φ x + 0 R
108 77 107 jca φ x + R 0 R
109 60 recnd φ x + d 1 x K T
110 19 ad2antrr φ x + d 1 x C
111 110 29 remulcld φ x + d 1 x C log x d x
112 18 ad2antrr φ x + d 1 x C 0 C
113 log1 log 1 = 0
114 61 nncnd φ x + d 1 x d
115 114 mulid2d φ x + d 1 x 1 d = d
116 rpre x + x
117 116 adantl φ x + x
118 fznnfl x d 1 x d d x
119 117 118 syl φ x + d 1 x d d x
120 119 simplbda φ x + d 1 x d x
121 115 120 eqbrtrd φ x + d 1 x 1 d x
122 1red φ x + d 1 x 1
123 116 ad2antlr φ x + d 1 x x
124 122 123 65 lemuldivd φ x + d 1 x 1 d x 1 x d
125 121 124 mpbid φ x + d 1 x 1 x d
126 1rp 1 +
127 126 a1i φ x + d 1 x 1 +
128 127 26 logled φ x + d 1 x 1 x d log 1 log x d
129 125 128 mpbid φ x + d 1 x log 1 log x d
130 113 129 eqbrtrrid φ x + d 1 x 0 log x d
131 rpregt0 x + x 0 < x
132 131 ad2antlr φ x + d 1 x x 0 < x
133 divge0 log x d 0 log x d x 0 < x 0 log x d x
134 27 130 132 133 syl21anc φ x + d 1 x 0 log x d x
135 mulge0 C 0 C log x d x 0 log x d x 0 C log x d x
136 112 29 134 135 syl12anc φ x + d 1 x 0 C log x d x
137 absidm K T K T = K T
138 59 137 syl φ x + d 1 x K T = K T
139 138 adantr φ x + d 1 x 3 x d K T = K T
140 10 fvoveq1d m = x d F T = K T
141 fveq2 m = x d log m = log x d
142 id m = x d m = x d
143 141 142 oveq12d m = x d log m m = log x d x d
144 143 oveq2d m = x d C log m m = C log x d x d
145 140 144 breq12d m = x d F T C log m m K T C log x d x d
146 13 ralrimiva φ m 3 +∞ F T C log m m
147 146 ad3antrrr φ x + d 1 x 3 x d m 3 +∞ F T C log m m
148 nndivre x d x d
149 117 23 148 syl2an φ x + d 1 x x d
150 149 adantr φ x + d 1 x 3 x d x d
151 simpr φ x + d 1 x 3 x d 3 x d
152 elicopnf 3 x d 3 +∞ x d 3 x d
153 73 152 ax-mp x d 3 +∞ x d 3 x d
154 150 151 153 sylanbrc φ x + d 1 x 3 x d x d 3 +∞
155 145 147 154 rspcdva φ x + d 1 x 3 x d K T C log x d x d
156 27 recnd φ x + d 1 x log x d
157 rpcnne0 x + x x 0
158 157 ad2antlr φ x + d 1 x x x 0
159 65 rpcnne0d φ x + d 1 x d d 0
160 divdiv2 log x d x x 0 d d 0 log x d x d = log x d d x
161 156 158 159 160 syl3anc φ x + d 1 x log x d x d = log x d d x
162 div23 log x d d x x 0 log x d d x = log x d x d
163 156 114 158 162 syl3anc φ x + d 1 x log x d d x = log x d x d
164 161 163 eqtrd φ x + d 1 x log x d x d = log x d x d
165 164 oveq2d φ x + d 1 x C log x d x d = C log x d x d
166 42 ad2antrr φ x + d 1 x C
167 29 recnd φ x + d 1 x log x d x
168 166 167 114 mulassd φ x + d 1 x C log x d x d = C log x d x d
169 165 168 eqtr4d φ x + d 1 x C log x d x d = C log x d x d
170 169 adantr φ x + d 1 x 3 x d C log x d x d = C log x d x d
171 155 170 breqtrd φ x + d 1 x 3 x d K T C log x d x d
172 139 171 eqbrtrd φ x + d 1 x 3 x d K T C log x d x d
173 138 adantr φ x + d 1 x x d < 3 K T = K T
174 140 breq1d m = x d F T R K T R
175 15 ad3antrrr φ x + d 1 x x d < 3 m 1 3 F T R
176 149 adantr φ x + d 1 x x d < 3 x d
177 125 adantr φ x + d 1 x x d < 3 1 x d
178 simpr φ x + d 1 x x d < 3 x d < 3
179 elico2 1 3 * x d 1 3 x d 1 x d x d < 3
180 36 79 179 mp2an x d 1 3 x d 1 x d x d < 3
181 176 177 178 180 syl3anbrc φ x + d 1 x x d < 3 x d 1 3
182 174 175 181 rspcdva φ x + d 1 x x d < 3 K T R
183 173 182 eqbrtrd φ x + d 1 x x d < 3 K T R
184 22 76 108 109 111 136 172 183 fsumharmonic φ x + d = 1 x K T d d = 1 x C log x d x + R log 3 + 1
185 42 adantr φ x + C
186 21 185 167 fsummulc2 φ x + C d = 1 x log x d x = d = 1 x C log x d x
187 186 oveq1d φ x + C d = 1 x log x d x + R log 3 + 1 = d = 1 x C log x d x + R log 3 + 1
188 184 187 breqtrrd φ x + d = 1 x K T d C d = 1 x log x d x + R log 3 + 1
189 53 leabsd φ x + C d = 1 x log x d x + R log 3 + 1 C d = 1 x log x d x + R log 3 + 1
190 70 53 72 188 189 letrd φ x + d = 1 x K T d C d = 1 x log x d x + R log 3 + 1
191 190 adantrr φ x + 1 x d = 1 x K T d C d = 1 x log x d x + R log 3 + 1
192 16 52 53 64 191 o1le φ x + d = 1 x K T d 𝑂1