Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrvmasum.f |
|
10 |
|
dchrvmasum.g |
|
11 |
|
dchrvmasum.c |
|
12 |
|
dchrvmasum.t |
|
13 |
|
dchrvmasum.1 |
|
14 |
|
dchrvmasum.r |
|
15 |
|
dchrvmasum.2 |
|
16 |
|
1red |
|
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
dchrvmasumlem2 |
|
18 |
|
fzfid |
|
19 |
10
|
eleq1d |
|
20 |
9
|
ralrimiva |
|
21 |
20
|
ad2antrr |
|
22 |
|
simpr |
|
23 |
|
elfznn |
|
24 |
23
|
nnrpd |
|
25 |
|
rpdivcl |
|
26 |
22 24 25
|
syl2an |
|
27 |
19 21 26
|
rspcdva |
|
28 |
12
|
ad2antrr |
|
29 |
27 28
|
subcld |
|
30 |
29
|
abscld |
|
31 |
23
|
adantl |
|
32 |
30 31
|
nndivred |
|
33 |
18 32
|
fsumrecl |
|
34 |
7
|
ad2antrr |
|
35 |
|
elfzelz |
|
36 |
35
|
adantl |
|
37 |
4 1 5 2 34 36
|
dchrzrhcl |
|
38 |
|
mucl |
|
39 |
31 38
|
syl |
|
40 |
39
|
zred |
|
41 |
40 31
|
nndivred |
|
42 |
41
|
recnd |
|
43 |
37 42
|
mulcld |
|
44 |
43 29
|
mulcld |
|
45 |
18 44
|
fsumcl |
|
46 |
45
|
abscld |
|
47 |
33
|
recnd |
|
48 |
47
|
abscld |
|
49 |
44
|
abscld |
|
50 |
18 49
|
fsumrecl |
|
51 |
18 44
|
fsumabs |
|
52 |
43
|
abscld |
|
53 |
31
|
nnrecred |
|
54 |
29
|
absge0d |
|
55 |
37 42
|
absmuld |
|
56 |
37
|
abscld |
|
57 |
|
1red |
|
58 |
42
|
abscld |
|
59 |
37
|
absge0d |
|
60 |
42
|
absge0d |
|
61 |
|
eqid |
|
62 |
3
|
nnnn0d |
|
63 |
1 61 2
|
znzrhfo |
|
64 |
62 63
|
syl |
|
65 |
|
fof |
|
66 |
64 65
|
syl |
|
67 |
66
|
ad2antrr |
|
68 |
67 36
|
ffvelrnd |
|
69 |
4 5 1 61 34 68
|
dchrabs2 |
|
70 |
40
|
recnd |
|
71 |
31
|
nncnd |
|
72 |
31
|
nnne0d |
|
73 |
70 71 72
|
absdivd |
|
74 |
31
|
nnrpd |
|
75 |
74
|
rprege0d |
|
76 |
|
absid |
|
77 |
75 76
|
syl |
|
78 |
77
|
oveq2d |
|
79 |
73 78
|
eqtrd |
|
80 |
70
|
abscld |
|
81 |
|
mule1 |
|
82 |
31 81
|
syl |
|
83 |
80 57 74 82
|
lediv1dd |
|
84 |
79 83
|
eqbrtrd |
|
85 |
56 57 58 53 59 60 69 84
|
lemul12ad |
|
86 |
53
|
recnd |
|
87 |
86
|
mulid2d |
|
88 |
85 87
|
breqtrd |
|
89 |
55 88
|
eqbrtrd |
|
90 |
52 53 30 54 89
|
lemul1ad |
|
91 |
43 29
|
absmuld |
|
92 |
30
|
recnd |
|
93 |
92 71 72
|
divrec2d |
|
94 |
90 91 93
|
3brtr4d |
|
95 |
18 49 32 94
|
fsumle |
|
96 |
46 50 33 51 95
|
letrd |
|
97 |
33
|
leabsd |
|
98 |
46 33 48 96 97
|
letrd |
|
99 |
98
|
adantrr |
|
100 |
16 17 33 45 99
|
o1le |
|