Metamath Proof Explorer


Theorem dchrzrhcl

Description: A Dirichlet character takes values in the complex numbers. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrelbas4.l L = ℤRHom Z
dchrzrh1.x φ X D
dchrzrh1.a φ A
Assertion dchrzrhcl φ X L A

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrelbas4.l L = ℤRHom Z
5 dchrzrh1.x φ X D
6 dchrzrh1.a φ A
7 eqid Base Z = Base Z
8 1 2 3 7 5 dchrf φ X : Base Z
9 1 3 dchrrcl X D N
10 nnnn0 N N 0
11 5 9 10 3syl φ N 0
12 2 7 4 znzrhfo N 0 L : onto Base Z
13 fof L : onto Base Z L : Base Z
14 11 12 13 3syl φ L : Base Z
15 14 6 ffvelrnd φ L A Base Z
16 8 15 ffvelrnd φ X L A