Metamath Proof Explorer


Theorem dchrzrhmul

Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrelbas4.l L = ℤRHom Z
dchrzrh1.x φ X D
dchrzrh1.a φ A
dchrzrh1.c φ C
Assertion dchrzrhmul φ X L A C = X L A X L C

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrelbas4.l L = ℤRHom Z
5 dchrzrh1.x φ X D
6 dchrzrh1.a φ A
7 dchrzrh1.c φ C
8 1 3 dchrrcl X D N
9 5 8 syl φ N
10 9 nnnn0d φ N 0
11 2 zncrng N 0 Z CRing
12 10 11 syl φ Z CRing
13 crngring Z CRing Z Ring
14 12 13 syl φ Z Ring
15 4 zrhrhm Z Ring L ring RingHom Z
16 14 15 syl φ L ring RingHom Z
17 zringbas = Base ring
18 zringmulr × = ring
19 eqid Z = Z
20 17 18 19 rhmmul L ring RingHom Z A C L A C = L A Z L C
21 16 6 7 20 syl3anc φ L A C = L A Z L C
22 21 fveq2d φ X L A C = X L A Z L C
23 1 2 3 dchrmhm D mulGrp Z MndHom mulGrp fld
24 23 5 sselid φ X mulGrp Z MndHom mulGrp fld
25 eqid Base Z = Base Z
26 17 25 rhmf L ring RingHom Z L : Base Z
27 16 26 syl φ L : Base Z
28 27 6 ffvelrnd φ L A Base Z
29 27 7 ffvelrnd φ L C Base Z
30 eqid mulGrp Z = mulGrp Z
31 30 25 mgpbas Base Z = Base mulGrp Z
32 30 19 mgpplusg Z = + mulGrp Z
33 eqid mulGrp fld = mulGrp fld
34 cnfldmul × = fld
35 33 34 mgpplusg × = + mulGrp fld
36 31 32 35 mhmlin X mulGrp Z MndHom mulGrp fld L A Base Z L C Base Z X L A Z L C = X L A X L C
37 24 28 29 36 syl3anc φ X L A Z L C = X L A X L C
38 22 37 eqtrd φ X L A C = X L A X L C