Metamath Proof Explorer


Theorem dcomex

Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we haveInf+AC impliesDC andDC impliesInf, but AC does not implyInf. (Contributed by Mario Carneiro, 25-Jan-2013)

Ref Expression
Assertion dcomex ω V

Proof

Step Hyp Ref Expression
1 1n0 1 𝑜
2 df-br f n 1 𝑜 1 𝑜 f suc n f n f suc n 1 𝑜 1 𝑜
3 elsni f n f suc n 1 𝑜 1 𝑜 f n f suc n = 1 𝑜 1 𝑜
4 fvex f n V
5 fvex f suc n V
6 4 5 opth1 f n f suc n = 1 𝑜 1 𝑜 f n = 1 𝑜
7 3 6 syl f n f suc n 1 𝑜 1 𝑜 f n = 1 𝑜
8 2 7 sylbi f n 1 𝑜 1 𝑜 f suc n f n = 1 𝑜
9 tz6.12i 1 𝑜 f n = 1 𝑜 n f 1 𝑜
10 1 8 9 mpsyl f n 1 𝑜 1 𝑜 f suc n n f 1 𝑜
11 vex n V
12 1oex 1 𝑜 V
13 11 12 breldm n f 1 𝑜 n dom f
14 10 13 syl f n 1 𝑜 1 𝑜 f suc n n dom f
15 14 ralimi n ω f n 1 𝑜 1 𝑜 f suc n n ω n dom f
16 dfss3 ω dom f n ω n dom f
17 15 16 sylibr n ω f n 1 𝑜 1 𝑜 f suc n ω dom f
18 vex f V
19 18 dmex dom f V
20 19 ssex ω dom f ω V
21 17 20 syl n ω f n 1 𝑜 1 𝑜 f suc n ω V
22 snex 1 𝑜 1 𝑜 V
23 12 12 fvsn 1 𝑜 1 𝑜 1 𝑜 = 1 𝑜
24 12 12 funsn Fun 1 𝑜 1 𝑜
25 12 snid 1 𝑜 1 𝑜
26 12 dmsnop dom 1 𝑜 1 𝑜 = 1 𝑜
27 25 26 eleqtrri 1 𝑜 dom 1 𝑜 1 𝑜
28 funbrfvb Fun 1 𝑜 1 𝑜 1 𝑜 dom 1 𝑜 1 𝑜 1 𝑜 1 𝑜 1 𝑜 = 1 𝑜 1 𝑜 1 𝑜 1 𝑜 1 𝑜
29 24 27 28 mp2an 1 𝑜 1 𝑜 1 𝑜 = 1 𝑜 1 𝑜 1 𝑜 1 𝑜 1 𝑜
30 23 29 mpbi 1 𝑜 1 𝑜 1 𝑜 1 𝑜
31 breq12 s = 1 𝑜 t = 1 𝑜 s 1 𝑜 1 𝑜 t 1 𝑜 1 𝑜 1 𝑜 1 𝑜
32 12 12 31 spc2ev 1 𝑜 1 𝑜 1 𝑜 1 𝑜 s t s 1 𝑜 1 𝑜 t
33 30 32 ax-mp s t s 1 𝑜 1 𝑜 t
34 breq x = 1 𝑜 1 𝑜 s x t s 1 𝑜 1 𝑜 t
35 34 2exbidv x = 1 𝑜 1 𝑜 s t s x t s t s 1 𝑜 1 𝑜 t
36 33 35 mpbiri x = 1 𝑜 1 𝑜 s t s x t
37 ssid 1 𝑜 1 𝑜
38 12 rnsnop ran 1 𝑜 1 𝑜 = 1 𝑜
39 37 38 26 3sstr4i ran 1 𝑜 1 𝑜 dom 1 𝑜 1 𝑜
40 rneq x = 1 𝑜 1 𝑜 ran x = ran 1 𝑜 1 𝑜
41 dmeq x = 1 𝑜 1 𝑜 dom x = dom 1 𝑜 1 𝑜
42 40 41 sseq12d x = 1 𝑜 1 𝑜 ran x dom x ran 1 𝑜 1 𝑜 dom 1 𝑜 1 𝑜
43 39 42 mpbiri x = 1 𝑜 1 𝑜 ran x dom x
44 pm5.5 s t s x t ran x dom x s t s x t ran x dom x f n ω f n x f suc n f n ω f n x f suc n
45 36 43 44 syl2anc x = 1 𝑜 1 𝑜 s t s x t ran x dom x f n ω f n x f suc n f n ω f n x f suc n
46 breq x = 1 𝑜 1 𝑜 f n x f suc n f n 1 𝑜 1 𝑜 f suc n
47 46 ralbidv x = 1 𝑜 1 𝑜 n ω f n x f suc n n ω f n 1 𝑜 1 𝑜 f suc n
48 47 exbidv x = 1 𝑜 1 𝑜 f n ω f n x f suc n f n ω f n 1 𝑜 1 𝑜 f suc n
49 45 48 bitrd x = 1 𝑜 1 𝑜 s t s x t ran x dom x f n ω f n x f suc n f n ω f n 1 𝑜 1 𝑜 f suc n
50 ax-dc s t s x t ran x dom x f n ω f n x f suc n
51 22 49 50 vtocl f n ω f n 1 𝑜 1 𝑜 f suc n
52 21 51 exlimiiv ω V