Metamath Proof Explorer


Theorem dcubic

Description: Solutions to the depressed cubic, a special case of cubic . (The definitions of M , N , G , T here differ from mcubic by scale factors of -u 9 , 5 4 , 5 4 and -u 2 7 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses dcubic.c φ P
dcubic.d φ Q
dcubic.x φ X
dcubic.t φ T
dcubic.3 φ T 3 = G N
dcubic.g φ G
dcubic.2 φ G 2 = N 2 + M 3
dcubic.m φ M = P 3
dcubic.n φ N = Q 2
dcubic.0 φ T 0
Assertion dcubic φ X 3 + P X + Q = 0 r r 3 = 1 X = r T M r T

Proof

Step Hyp Ref Expression
1 dcubic.c φ P
2 dcubic.d φ Q
3 dcubic.x φ X
4 dcubic.t φ T
5 dcubic.3 φ T 3 = G N
6 dcubic.g φ G
7 dcubic.2 φ G 2 = N 2 + M 3
8 dcubic.m φ M = P 3
9 dcubic.n φ N = Q 2
10 dcubic.0 φ T 0
11 10 adantr φ X 3 + P X + Q = 0 T 0
12 4 adantr φ X 3 + P X + Q = 0 T
13 3z 3
14 expne0i T T 0 3 T 3 0
15 13 14 mp3an3 T T 0 T 3 0
16 15 ex T T 0 T 3 0
17 12 16 syl φ X 3 + P X + Q = 0 T 0 T 3 0
18 5 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 T 3 = G N
19 6 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 G
20 7 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 G 2 = N 2 + M 3
21 9 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 N = Q 2
22 simprl φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X = 0
23 22 oveq2d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P X = P 0
24 1 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P
25 24 mul01d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P 0 = 0
26 23 25 eqtrd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P X = 0
27 26 oveq1d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P X + Q = 0 + Q
28 22 oveq1d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 3 = 0 3
29 3nn 3
30 0exp 3 0 3 = 0
31 29 30 ax-mp 0 3 = 0
32 28 31 eqtrdi φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 3 = 0
33 32 oveq1d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 3 + P X + Q = 0 + P X + Q
34 simplr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 3 + P X + Q = 0
35 0cnd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 0
36 26 35 eqeltrd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P X
37 2 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 Q
38 36 37 addcld φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P X + Q
39 38 addid2d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 0 + P X + Q = P X + Q
40 33 34 39 3eqtr3rd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 P X + Q = 0
41 37 addid2d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 0 + Q = Q
42 27 40 41 3eqtr3rd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 Q = 0
43 42 oveq1d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 Q 2 = 0 2
44 2cn 2
45 2ne0 2 0
46 44 45 div0i 0 2 = 0
47 43 46 eqtrdi φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 Q 2 = 0
48 21 47 eqtrd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 N = 0
49 48 sq0id φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 N 2 = 0
50 3cn 3
51 50 a1i φ 3
52 3ne0 3 0
53 52 a1i φ 3 0
54 1 51 53 divcld φ P 3
55 8 54 eqeltrd φ M
56 55 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 M
57 4cn 4
58 57 a1i φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 4
59 4ne0 4 0
60 59 a1i φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 4 0
61 22 sq0id φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 2 = 0
62 61 oveq1d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 2 + 4 M = 0 + 4 M
63 3 sqcld φ X 2
64 mulcl 4 M 4 M
65 57 55 64 sylancr φ 4 M
66 63 65 addcld φ X 2 + 4 M
67 66 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 2 + 4 M
68 simprr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 2 + 4 M = 0
69 67 68 sqr00d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 X 2 + 4 M = 0
70 65 ad2antrr φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 4 M
71 70 addid2d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 0 + 4 M = 4 M
72 62 69 71 3eqtr3rd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 4 M = 0
73 57 mul01i 4 0 = 0
74 72 73 eqtr4di φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 4 M = 4 0
75 56 35 58 60 74 mulcanad φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 M = 0
76 75 oveq1d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 M 3 = 0 3
77 76 31 eqtrdi φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 M 3 = 0
78 49 77 oveq12d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 N 2 + M 3 = 0 + 0
79 00id 0 + 0 = 0
80 78 79 eqtrdi φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 N 2 + M 3 = 0
81 20 80 eqtrd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 G 2 = 0
82 19 81 sqeq0d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 G = 0
83 82 48 oveq12d φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 G N = 0 0
84 0m0e0 0 0 = 0
85 83 84 eqtrdi φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 G N = 0
86 18 85 eqtrd φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 T 3 = 0
87 86 ex φ X 3 + P X + Q = 0 X = 0 X 2 + 4 M = 0 T 3 = 0
88 87 necon3ad φ X 3 + P X + Q = 0 T 3 0 ¬ X = 0 X 2 + 4 M = 0
89 17 88 syld φ X 3 + P X + Q = 0 T 0 ¬ X = 0 X 2 + 4 M = 0
90 11 89 mpd φ X 3 + P X + Q = 0 ¬ X = 0 X 2 + 4 M = 0
91 oveq12 X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 + X X 2 + 4 M 2 = 0 + 0
92 91 79 eqtrdi X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 + X X 2 + 4 M 2 = 0
93 oveq12 X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 X X 2 + 4 M 2 = 0 0
94 93 84 eqtrdi X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 X X 2 + 4 M 2 = 0
95 92 94 jca X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 + X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 X X 2 + 4 M 2 = 0
96 66 sqrtcld φ X 2 + 4 M
97 halfaddsub X X 2 + 4 M X + X 2 + 4 M 2 + X X 2 + 4 M 2 = X X + X 2 + 4 M 2 X X 2 + 4 M 2 = X 2 + 4 M
98 3 96 97 syl2anc φ X + X 2 + 4 M 2 + X X 2 + 4 M 2 = X X + X 2 + 4 M 2 X X 2 + 4 M 2 = X 2 + 4 M
99 98 simpld φ X + X 2 + 4 M 2 + X X 2 + 4 M 2 = X
100 99 eqeq1d φ X + X 2 + 4 M 2 + X X 2 + 4 M 2 = 0 X = 0
101 98 simprd φ X + X 2 + 4 M 2 X X 2 + 4 M 2 = X 2 + 4 M
102 101 eqeq1d φ X + X 2 + 4 M 2 X X 2 + 4 M 2 = 0 X 2 + 4 M = 0
103 100 102 anbi12d φ X + X 2 + 4 M 2 + X X 2 + 4 M 2 = 0 X + X 2 + 4 M 2 X X 2 + 4 M 2 = 0 X = 0 X 2 + 4 M = 0
104 95 103 syl5ib φ X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0 X = 0 X 2 + 4 M = 0
105 104 con3d φ ¬ X = 0 X 2 + 4 M = 0 ¬ X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0
106 eldifi u 0 u
107 106 adantl φ u 0 u
108 55 adantr φ u 0 M
109 eldifsni u 0 u 0
110 109 adantl φ u 0 u 0
111 108 107 110 divcld φ u 0 M u
112 3 adantr φ u 0 X
113 107 111 112 subaddd φ u 0 u M u = X M u + X = u
114 eqcom X = u M u u M u = X
115 eqcom u = M u + X M u + X = u
116 113 114 115 3bitr4g φ u 0 X = u M u u = M u + X
117 107 sqcld φ u 0 u 2
118 112 107 mulcld φ u 0 X u
119 118 108 addcld φ u 0 X u + M
120 117 119 subeq0ad φ u 0 u 2 X u + M = 0 u 2 = X u + M
121 107 sqvald φ u 0 u 2 = u u
122 111 112 107 adddird φ u 0 M u + X u = M u u + X u
123 108 107 110 divcan1d φ u 0 M u u = M
124 123 oveq1d φ u 0 M u u + X u = M + X u
125 108 118 addcomd φ u 0 M + X u = X u + M
126 122 124 125 3eqtrrd φ u 0 X u + M = M u + X u
127 121 126 eqeq12d φ u 0 u 2 = X u + M u u = M u + X u
128 111 112 addcld φ u 0 M u + X
129 107 128 107 110 mulcan2d φ u 0 u u = M u + X u u = M u + X
130 120 127 129 3bitrd φ u 0 u 2 X u + M = 0 u = M u + X
131 1cnd φ u 0 1
132 ax-1ne0 1 0
133 132 a1i φ u 0 1 0
134 3 negcld φ X
135 134 adantr φ u 0 X
136 55 negcld φ M
137 136 adantr φ u 0 M
138 sqneg X X 2 = X 2
139 112 138 syl φ u 0 X 2 = X 2
140 137 mulid2d φ u 0 1 -M = M
141 140 oveq2d φ u 0 4 1 -M = 4 -M
142 mulneg2 4 M 4 -M = 4 M
143 57 108 142 sylancr φ u 0 4 -M = 4 M
144 141 143 eqtrd φ u 0 4 1 -M = 4 M
145 139 144 oveq12d φ u 0 X 2 4 1 -M = X 2 4 M
146 63 adantr φ u 0 X 2
147 65 adantr φ u 0 4 M
148 146 147 subnegd φ u 0 X 2 4 M = X 2 + 4 M
149 145 148 eqtr2d φ u 0 X 2 + 4 M = X 2 4 1 -M
150 131 133 135 137 107 149 quad φ u 0 1 u 2 + X u + -M = 0 u = - X + X 2 + 4 M 2 1 u = - X - X 2 + 4 M 2 1
151 117 mulid2d φ u 0 1 u 2 = u 2
152 112 107 mulneg1d φ u 0 X u = X u
153 152 oveq1d φ u 0 X u + -M = - X u + -M
154 118 108 negdid φ u 0 X u + M = - X u + -M
155 153 154 eqtr4d φ u 0 X u + -M = X u + M
156 151 155 oveq12d φ u 0 1 u 2 + X u + -M = u 2 + X u + M
157 117 119 negsubd φ u 0 u 2 + X u + M = u 2 X u + M
158 156 157 eqtrd φ u 0 1 u 2 + X u + -M = u 2 X u + M
159 158 eqeq1d φ u 0 1 u 2 + X u + -M = 0 u 2 X u + M = 0
160 112 negnegd φ u 0 X = X
161 160 oveq1d φ u 0 - X + X 2 + 4 M = X + X 2 + 4 M
162 2t1e2 2 1 = 2
163 162 a1i φ u 0 2 1 = 2
164 161 163 oveq12d φ u 0 - X + X 2 + 4 M 2 1 = X + X 2 + 4 M 2
165 164 eqeq2d φ u 0 u = - X + X 2 + 4 M 2 1 u = X + X 2 + 4 M 2
166 160 oveq1d φ u 0 - X - X 2 + 4 M = X X 2 + 4 M
167 166 163 oveq12d φ u 0 - X - X 2 + 4 M 2 1 = X X 2 + 4 M 2
168 167 eqeq2d φ u 0 u = - X - X 2 + 4 M 2 1 u = X X 2 + 4 M 2
169 165 168 orbi12d φ u 0 u = - X + X 2 + 4 M 2 1 u = - X - X 2 + 4 M 2 1 u = X + X 2 + 4 M 2 u = X X 2 + 4 M 2
170 150 159 169 3bitr3d φ u 0 u 2 X u + M = 0 u = X + X 2 + 4 M 2 u = X X 2 + 4 M 2
171 116 130 170 3bitr2d φ u 0 X = u M u u = X + X 2 + 4 M 2 u = X X 2 + 4 M 2
172 171 rexbidva φ u 0 X = u M u u 0 u = X + X 2 + 4 M 2 u = X X 2 + 4 M 2
173 r19.43 u 0 u = X + X 2 + 4 M 2 u = X X 2 + 4 M 2 u 0 u = X + X 2 + 4 M 2 u 0 u = X X 2 + 4 M 2
174 172 173 bitrdi φ u 0 X = u M u u 0 u = X + X 2 + 4 M 2 u 0 u = X X 2 + 4 M 2
175 risset X + X 2 + 4 M 2 0 u 0 u = X + X 2 + 4 M 2
176 3 96 addcld φ X + X 2 + 4 M
177 176 halfcld φ X + X 2 + 4 M 2
178 eldifsn X + X 2 + 4 M 2 0 X + X 2 + 4 M 2 X + X 2 + 4 M 2 0
179 178 baib X + X 2 + 4 M 2 X + X 2 + 4 M 2 0 X + X 2 + 4 M 2 0
180 177 179 syl φ X + X 2 + 4 M 2 0 X + X 2 + 4 M 2 0
181 175 180 bitr3id φ u 0 u = X + X 2 + 4 M 2 X + X 2 + 4 M 2 0
182 risset X X 2 + 4 M 2 0 u 0 u = X X 2 + 4 M 2
183 3 96 subcld φ X X 2 + 4 M
184 183 halfcld φ X X 2 + 4 M 2
185 eldifsn X X 2 + 4 M 2 0 X X 2 + 4 M 2 X X 2 + 4 M 2 0
186 185 baib X X 2 + 4 M 2 X X 2 + 4 M 2 0 X X 2 + 4 M 2 0
187 184 186 syl φ X X 2 + 4 M 2 0 X X 2 + 4 M 2 0
188 182 187 bitr3id φ u 0 u = X X 2 + 4 M 2 X X 2 + 4 M 2 0
189 181 188 orbi12d φ u 0 u = X + X 2 + 4 M 2 u 0 u = X X 2 + 4 M 2 X + X 2 + 4 M 2 0 X X 2 + 4 M 2 0
190 neorian X + X 2 + 4 M 2 0 X X 2 + 4 M 2 0 ¬ X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0
191 189 190 bitrdi φ u 0 u = X + X 2 + 4 M 2 u 0 u = X X 2 + 4 M 2 ¬ X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0
192 174 191 bitrd φ u 0 X = u M u ¬ X + X 2 + 4 M 2 = 0 X X 2 + 4 M 2 = 0
193 105 192 sylibrd φ ¬ X = 0 X 2 + 4 M = 0 u 0 X = u M u
194 193 imp φ ¬ X = 0 X 2 + 4 M = 0 u 0 X = u M u
195 90 194 syldan φ X 3 + P X + Q = 0 u 0 X = u M u
196 1 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u P
197 2 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u Q
198 3 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u X
199 4 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u T
200 5 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u T 3 = G N
201 6 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u G
202 7 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u G 2 = N 2 + M 3
203 8 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u M = P 3
204 9 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u N = Q 2
205 10 ad2antrr φ X 3 + P X + Q = 0 u 0 X = u M u T 0
206 106 ad2antrl φ X 3 + P X + Q = 0 u 0 X = u M u u
207 109 ad2antrl φ X 3 + P X + Q = 0 u 0 X = u M u u 0
208 simprr φ X 3 + P X + Q = 0 u 0 X = u M u X = u M u
209 simplr φ X 3 + P X + Q = 0 u 0 X = u M u X 3 + P X + Q = 0
210 196 197 198 199 200 201 202 203 204 205 206 207 208 209 dcubic2 φ X 3 + P X + Q = 0 u 0 X = u M u r r 3 = 1 X = r T M r T
211 195 210 rexlimddv φ X 3 + P X + Q = 0 r r 3 = 1 X = r T M r T
212 211 ex φ X 3 + P X + Q = 0 r r 3 = 1 X = r T M r T
213 1 ad2antrr φ r r 3 = 1 X = r T M r T P
214 2 ad2antrr φ r r 3 = 1 X = r T M r T Q
215 3 ad2antrr φ r r 3 = 1 X = r T M r T X
216 simplr φ r r 3 = 1 X = r T M r T r
217 4 ad2antrr φ r r 3 = 1 X = r T M r T T
218 216 217 mulcld φ r r 3 = 1 X = r T M r T r T
219 3nn0 3 0
220 219 a1i φ r r 3 = 1 X = r T M r T 3 0
221 216 217 220 mulexpd φ r r 3 = 1 X = r T M r T r T 3 = r 3 T 3
222 simprl φ r r 3 = 1 X = r T M r T r 3 = 1
223 222 oveq1d φ r r 3 = 1 X = r T M r T r 3 T 3 = 1 T 3
224 expcl T 3 0 T 3
225 4 219 224 sylancl φ T 3
226 225 mulid2d φ 1 T 3 = T 3
227 226 5 eqtrd φ 1 T 3 = G N
228 227 ad2antrr φ r r 3 = 1 X = r T M r T 1 T 3 = G N
229 221 223 228 3eqtrd φ r r 3 = 1 X = r T M r T r T 3 = G N
230 6 ad2antrr φ r r 3 = 1 X = r T M r T G
231 7 ad2antrr φ r r 3 = 1 X = r T M r T G 2 = N 2 + M 3
232 8 ad2antrr φ r r 3 = 1 X = r T M r T M = P 3
233 9 ad2antrr φ r r 3 = 1 X = r T M r T N = Q 2
234 132 a1i φ r r 3 = 1 X = r T M r T 1 0
235 222 234 eqnetrd φ r r 3 = 1 X = r T M r T r 3 0
236 oveq1 r = 0 r 3 = 0 3
237 236 31 eqtrdi r = 0 r 3 = 0
238 237 necon3i r 3 0 r 0
239 235 238 syl φ r r 3 = 1 X = r T M r T r 0
240 10 ad2antrr φ r r 3 = 1 X = r T M r T T 0
241 216 217 239 240 mulne0d φ r r 3 = 1 X = r T M r T r T 0
242 simprr φ r r 3 = 1 X = r T M r T X = r T M r T
243 213 214 215 218 229 230 231 232 233 241 242 dcubic1 φ r r 3 = 1 X = r T M r T X 3 + P X + Q = 0
244 243 rexlimdva2 φ r r 3 = 1 X = r T M r T X 3 + P X + Q = 0
245 212 244 impbid φ X 3 + P X + Q = 0 r r 3 = 1 X = r T M r T