Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
|
2 |
|
dcubic.d |
|
3 |
|
dcubic.x |
|
4 |
|
dcubic.t |
|
5 |
|
dcubic.3 |
|
6 |
|
dcubic.g |
|
7 |
|
dcubic.2 |
|
8 |
|
dcubic.m |
|
9 |
|
dcubic.n |
|
10 |
|
dcubic.0 |
|
11 |
10
|
adantr |
|
12 |
4
|
adantr |
|
13 |
|
3z |
|
14 |
|
expne0i |
|
15 |
13 14
|
mp3an3 |
|
16 |
15
|
ex |
|
17 |
12 16
|
syl |
|
18 |
5
|
ad2antrr |
|
19 |
6
|
ad2antrr |
|
20 |
7
|
ad2antrr |
|
21 |
9
|
ad2antrr |
|
22 |
|
simprl |
|
23 |
22
|
oveq2d |
|
24 |
1
|
ad2antrr |
|
25 |
24
|
mul01d |
|
26 |
23 25
|
eqtrd |
|
27 |
26
|
oveq1d |
|
28 |
22
|
oveq1d |
|
29 |
|
3nn |
|
30 |
|
0exp |
|
31 |
29 30
|
ax-mp |
|
32 |
28 31
|
eqtrdi |
|
33 |
32
|
oveq1d |
|
34 |
|
simplr |
|
35 |
|
0cnd |
|
36 |
26 35
|
eqeltrd |
|
37 |
2
|
ad2antrr |
|
38 |
36 37
|
addcld |
|
39 |
38
|
addid2d |
|
40 |
33 34 39
|
3eqtr3rd |
|
41 |
37
|
addid2d |
|
42 |
27 40 41
|
3eqtr3rd |
|
43 |
42
|
oveq1d |
|
44 |
|
2cn |
|
45 |
|
2ne0 |
|
46 |
44 45
|
div0i |
|
47 |
43 46
|
eqtrdi |
|
48 |
21 47
|
eqtrd |
|
49 |
48
|
sq0id |
|
50 |
|
3cn |
|
51 |
50
|
a1i |
|
52 |
|
3ne0 |
|
53 |
52
|
a1i |
|
54 |
1 51 53
|
divcld |
|
55 |
8 54
|
eqeltrd |
|
56 |
55
|
ad2antrr |
|
57 |
|
4cn |
|
58 |
57
|
a1i |
|
59 |
|
4ne0 |
|
60 |
59
|
a1i |
|
61 |
22
|
sq0id |
|
62 |
61
|
oveq1d |
|
63 |
3
|
sqcld |
|
64 |
|
mulcl |
|
65 |
57 55 64
|
sylancr |
|
66 |
63 65
|
addcld |
|
67 |
66
|
ad2antrr |
|
68 |
|
simprr |
|
69 |
67 68
|
sqr00d |
|
70 |
65
|
ad2antrr |
|
71 |
70
|
addid2d |
|
72 |
62 69 71
|
3eqtr3rd |
|
73 |
57
|
mul01i |
|
74 |
72 73
|
eqtr4di |
|
75 |
56 35 58 60 74
|
mulcanad |
|
76 |
75
|
oveq1d |
|
77 |
76 31
|
eqtrdi |
|
78 |
49 77
|
oveq12d |
|
79 |
|
00id |
|
80 |
78 79
|
eqtrdi |
|
81 |
20 80
|
eqtrd |
|
82 |
19 81
|
sqeq0d |
|
83 |
82 48
|
oveq12d |
|
84 |
|
0m0e0 |
|
85 |
83 84
|
eqtrdi |
|
86 |
18 85
|
eqtrd |
|
87 |
86
|
ex |
|
88 |
87
|
necon3ad |
|
89 |
17 88
|
syld |
|
90 |
11 89
|
mpd |
|
91 |
|
oveq12 |
|
92 |
91 79
|
eqtrdi |
|
93 |
|
oveq12 |
|
94 |
93 84
|
eqtrdi |
|
95 |
92 94
|
jca |
|
96 |
66
|
sqrtcld |
|
97 |
|
halfaddsub |
|
98 |
3 96 97
|
syl2anc |
|
99 |
98
|
simpld |
|
100 |
99
|
eqeq1d |
|
101 |
98
|
simprd |
|
102 |
101
|
eqeq1d |
|
103 |
100 102
|
anbi12d |
|
104 |
95 103
|
syl5ib |
|
105 |
104
|
con3d |
|
106 |
|
eldifi |
|
107 |
106
|
adantl |
|
108 |
55
|
adantr |
|
109 |
|
eldifsni |
|
110 |
109
|
adantl |
|
111 |
108 107 110
|
divcld |
|
112 |
3
|
adantr |
|
113 |
107 111 112
|
subaddd |
|
114 |
|
eqcom |
|
115 |
|
eqcom |
|
116 |
113 114 115
|
3bitr4g |
|
117 |
107
|
sqcld |
|
118 |
112 107
|
mulcld |
|
119 |
118 108
|
addcld |
|
120 |
117 119
|
subeq0ad |
|
121 |
107
|
sqvald |
|
122 |
111 112 107
|
adddird |
|
123 |
108 107 110
|
divcan1d |
|
124 |
123
|
oveq1d |
|
125 |
108 118
|
addcomd |
|
126 |
122 124 125
|
3eqtrrd |
|
127 |
121 126
|
eqeq12d |
|
128 |
111 112
|
addcld |
|
129 |
107 128 107 110
|
mulcan2d |
|
130 |
120 127 129
|
3bitrd |
|
131 |
|
1cnd |
|
132 |
|
ax-1ne0 |
|
133 |
132
|
a1i |
|
134 |
3
|
negcld |
|
135 |
134
|
adantr |
|
136 |
55
|
negcld |
|
137 |
136
|
adantr |
|
138 |
|
sqneg |
|
139 |
112 138
|
syl |
|
140 |
137
|
mulid2d |
|
141 |
140
|
oveq2d |
|
142 |
|
mulneg2 |
|
143 |
57 108 142
|
sylancr |
|
144 |
141 143
|
eqtrd |
|
145 |
139 144
|
oveq12d |
|
146 |
63
|
adantr |
|
147 |
65
|
adantr |
|
148 |
146 147
|
subnegd |
|
149 |
145 148
|
eqtr2d |
|
150 |
131 133 135 137 107 149
|
quad |
|
151 |
117
|
mulid2d |
|
152 |
112 107
|
mulneg1d |
|
153 |
152
|
oveq1d |
|
154 |
118 108
|
negdid |
|
155 |
153 154
|
eqtr4d |
|
156 |
151 155
|
oveq12d |
|
157 |
117 119
|
negsubd |
|
158 |
156 157
|
eqtrd |
|
159 |
158
|
eqeq1d |
|
160 |
112
|
negnegd |
|
161 |
160
|
oveq1d |
|
162 |
|
2t1e2 |
|
163 |
162
|
a1i |
|
164 |
161 163
|
oveq12d |
|
165 |
164
|
eqeq2d |
|
166 |
160
|
oveq1d |
|
167 |
166 163
|
oveq12d |
|
168 |
167
|
eqeq2d |
|
169 |
165 168
|
orbi12d |
|
170 |
150 159 169
|
3bitr3d |
|
171 |
116 130 170
|
3bitr2d |
|
172 |
171
|
rexbidva |
|
173 |
|
r19.43 |
|
174 |
172 173
|
bitrdi |
|
175 |
|
risset |
|
176 |
3 96
|
addcld |
|
177 |
176
|
halfcld |
|
178 |
|
eldifsn |
|
179 |
178
|
baib |
|
180 |
177 179
|
syl |
|
181 |
175 180
|
bitr3id |
|
182 |
|
risset |
|
183 |
3 96
|
subcld |
|
184 |
183
|
halfcld |
|
185 |
|
eldifsn |
|
186 |
185
|
baib |
|
187 |
184 186
|
syl |
|
188 |
182 187
|
bitr3id |
|
189 |
181 188
|
orbi12d |
|
190 |
|
neorian |
|
191 |
189 190
|
bitrdi |
|
192 |
174 191
|
bitrd |
|
193 |
105 192
|
sylibrd |
|
194 |
193
|
imp |
|
195 |
90 194
|
syldan |
|
196 |
1
|
ad2antrr |
|
197 |
2
|
ad2antrr |
|
198 |
3
|
ad2antrr |
|
199 |
4
|
ad2antrr |
|
200 |
5
|
ad2antrr |
|
201 |
6
|
ad2antrr |
|
202 |
7
|
ad2antrr |
|
203 |
8
|
ad2antrr |
|
204 |
9
|
ad2antrr |
|
205 |
10
|
ad2antrr |
|
206 |
106
|
ad2antrl |
|
207 |
109
|
ad2antrl |
|
208 |
|
simprr |
|
209 |
|
simplr |
|
210 |
196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
dcubic2 |
|
211 |
195 210
|
rexlimddv |
|
212 |
211
|
ex |
|
213 |
1
|
ad2antrr |
|
214 |
2
|
ad2antrr |
|
215 |
3
|
ad2antrr |
|
216 |
|
simplr |
|
217 |
4
|
ad2antrr |
|
218 |
216 217
|
mulcld |
|
219 |
|
3nn0 |
|
220 |
219
|
a1i |
|
221 |
216 217 220
|
mulexpd |
|
222 |
|
simprl |
|
223 |
222
|
oveq1d |
|
224 |
|
expcl |
|
225 |
4 219 224
|
sylancl |
|
226 |
225
|
mulid2d |
|
227 |
226 5
|
eqtrd |
|
228 |
227
|
ad2antrr |
|
229 |
221 223 228
|
3eqtrd |
|
230 |
6
|
ad2antrr |
|
231 |
7
|
ad2antrr |
|
232 |
8
|
ad2antrr |
|
233 |
9
|
ad2antrr |
|
234 |
132
|
a1i |
|
235 |
222 234
|
eqnetrd |
|
236 |
|
oveq1 |
|
237 |
236 31
|
eqtrdi |
|
238 |
237
|
necon3i |
|
239 |
235 238
|
syl |
|
240 |
10
|
ad2antrr |
|
241 |
216 217 239 240
|
mulne0d |
|
242 |
|
simprr |
|
243 |
213 214 215 218 229 230 231 232 233 241 242
|
dcubic1 |
|
244 |
243
|
rexlimdva2 |
|
245 |
212 244
|
impbid |
|