Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
|
2 |
|
dcubic.d |
|
3 |
|
dcubic.x |
|
4 |
|
dcubic.t |
|
5 |
|
dcubic.3 |
|
6 |
|
dcubic.g |
|
7 |
|
dcubic.2 |
|
8 |
|
dcubic.m |
|
9 |
|
dcubic.n |
|
10 |
|
dcubic.0 |
|
11 |
|
dcubic1.x |
|
12 |
5
|
oveq1d |
|
13 |
2
|
halfcld |
|
14 |
9 13
|
eqeltrd |
|
15 |
|
binom2sub |
|
16 |
6 14 15
|
syl2anc |
|
17 |
|
2cnd |
|
18 |
17 6 14
|
mul12d |
|
19 |
9
|
oveq2d |
|
20 |
|
2ne0 |
|
21 |
20
|
a1i |
|
22 |
2 17 21
|
divcan2d |
|
23 |
19 22
|
eqtrd |
|
24 |
23
|
oveq2d |
|
25 |
6 2
|
mulcomd |
|
26 |
18 24 25
|
3eqtrd |
|
27 |
7 26
|
oveq12d |
|
28 |
27
|
oveq1d |
|
29 |
12 16 28
|
3eqtrd |
|
30 |
14
|
sqcld |
|
31 |
|
3cn |
|
32 |
31
|
a1i |
|
33 |
|
3ne0 |
|
34 |
33
|
a1i |
|
35 |
1 32 34
|
divcld |
|
36 |
8 35
|
eqeltrd |
|
37 |
|
3nn0 |
|
38 |
|
expcl |
|
39 |
36 37 38
|
sylancl |
|
40 |
30 39
|
addcld |
|
41 |
2 6
|
mulcld |
|
42 |
40 30 41
|
addsubd |
|
43 |
30 39 30
|
add32d |
|
44 |
30
|
2timesd |
|
45 |
44
|
oveq1d |
|
46 |
43 45
|
eqtr4d |
|
47 |
46
|
oveq1d |
|
48 |
29 42 47
|
3eqtr2d |
|
49 |
2 6 14
|
subdid |
|
50 |
5
|
oveq2d |
|
51 |
14
|
sqvald |
|
52 |
51
|
oveq2d |
|
53 |
17 14 14
|
mulassd |
|
54 |
23
|
oveq1d |
|
55 |
52 53 54
|
3eqtr2d |
|
56 |
55
|
oveq2d |
|
57 |
49 50 56
|
3eqtr4d |
|
58 |
57
|
oveq1d |
|
59 |
|
2cn |
|
60 |
|
mulcl |
|
61 |
59 30 60
|
sylancr |
|
62 |
41 61 39
|
subsub4d |
|
63 |
58 62
|
eqtrd |
|
64 |
48 63
|
oveq12d |
|
65 |
61 39
|
addcld |
|
66 |
|
npncan2 |
|
67 |
65 41 66
|
syl2anc |
|
68 |
64 67
|
eqtrd |
|
69 |
1 2 3 4 5 6 7 8 9 10 4 10 11
|
dcubic1lem |
|
70 |
68 69
|
mpbird |
|