Metamath Proof Explorer


Theorem dcubic2

Description: Reverse direction of dcubic . Given a solution U to the "substitution" quadratic equation X = U - M / U , show that X is in the desired form. (Contributed by Mario Carneiro, 25-Apr-2015)

Ref Expression
Hypotheses dcubic.c φ P
dcubic.d φ Q
dcubic.x φ X
dcubic.t φ T
dcubic.3 φ T 3 = G N
dcubic.g φ G
dcubic.2 φ G 2 = N 2 + M 3
dcubic.m φ M = P 3
dcubic.n φ N = Q 2
dcubic.0 φ T 0
dcubic2.u φ U
dcubic2.z φ U 0
dcubic2.2 φ X = U M U
dcubic2.x φ X 3 + P X + Q = 0
Assertion dcubic2 φ r r 3 = 1 X = r T M r T

Proof

Step Hyp Ref Expression
1 dcubic.c φ P
2 dcubic.d φ Q
3 dcubic.x φ X
4 dcubic.t φ T
5 dcubic.3 φ T 3 = G N
6 dcubic.g φ G
7 dcubic.2 φ G 2 = N 2 + M 3
8 dcubic.m φ M = P 3
9 dcubic.n φ N = Q 2
10 dcubic.0 φ T 0
11 dcubic2.u φ U
12 dcubic2.z φ U 0
13 dcubic2.2 φ X = U M U
14 dcubic2.x φ X 3 + P X + Q = 0
15 11 4 10 divcld φ U T
16 15 adantr φ U 3 = G N U T
17 3nn0 3 0
18 17 a1i φ 3 0
19 11 4 10 18 expdivd φ U T 3 = U 3 T 3
20 19 adantr φ U 3 = G N U T 3 = U 3 T 3
21 oveq1 U 3 = G N U 3 T 3 = G N T 3
22 5 oveq1d φ T 3 T 3 = G N T 3
23 expcl T 3 0 T 3
24 4 17 23 sylancl φ T 3
25 3z 3
26 25 a1i φ 3
27 4 10 26 expne0d φ T 3 0
28 24 27 dividd φ T 3 T 3 = 1
29 22 28 eqtr3d φ G N T 3 = 1
30 21 29 sylan9eqr φ U 3 = G N U 3 T 3 = 1
31 20 30 eqtrd φ U 3 = G N U T 3 = 1
32 11 4 10 divcan1d φ U T T = U
33 32 oveq2d φ M U T T = M U
34 32 33 oveq12d φ U T T M U T T = U M U
35 13 34 eqtr4d φ X = U T T M U T T
36 35 adantr φ U 3 = G N X = U T T M U T T
37 oveq1 r = U T r 3 = U T 3
38 37 eqeq1d r = U T r 3 = 1 U T 3 = 1
39 oveq1 r = U T r T = U T T
40 39 oveq2d r = U T M r T = M U T T
41 39 40 oveq12d r = U T r T M r T = U T T M U T T
42 41 eqeq2d r = U T X = r T M r T X = U T T M U T T
43 38 42 anbi12d r = U T r 3 = 1 X = r T M r T U T 3 = 1 X = U T T M U T T
44 43 rspcev U T U T 3 = 1 X = U T T M U T T r r 3 = 1 X = r T M r T
45 16 31 36 44 syl12anc φ U 3 = G N r r 3 = 1 X = r T M r T
46 3cn 3
47 46 a1i φ 3
48 3ne0 3 0
49 48 a1i φ 3 0
50 1 47 49 divcld φ P 3
51 8 50 eqeltrd φ M
52 51 11 12 divcld φ M U
53 52 negcld φ M U
54 53 4 10 divcld φ M U T
55 54 adantr φ U 3 = G + N M U T
56 53 4 10 18 expdivd φ M U T 3 = M U 3 T 3
57 51 11 12 divnegd φ M U = M U
58 57 oveq1d φ M U 3 = M U 3
59 51 negcld φ M
60 59 11 12 18 expdivd φ M U 3 = M 3 U 3
61 5 oveq2d φ G + N T 3 = G + N G N
62 2 halfcld φ Q 2
63 9 62 eqeltrd φ N
64 subsq G N G 2 N 2 = G + N G N
65 6 63 64 syl2anc φ G 2 N 2 = G + N G N
66 61 65 eqtr4d φ G + N T 3 = G 2 N 2
67 7 oveq1d φ G 2 N 2 = N 2 + M 3 - N 2
68 63 sqcld φ N 2
69 expcl M 3 0 M 3
70 51 17 69 sylancl φ M 3
71 68 70 pncan2d φ N 2 + M 3 - N 2 = M 3
72 66 67 71 3eqtrd φ G + N T 3 = M 3
73 72 negeqd φ G + N T 3 = M 3
74 6 63 addcld φ G + N
75 74 24 mulneg1d φ G + N T 3 = G + N T 3
76 3nn 3
77 76 a1i φ 3
78 n2dvds3 ¬ 2 3
79 78 a1i φ ¬ 2 3
80 oexpneg M 3 ¬ 2 3 M 3 = M 3
81 51 77 79 80 syl3anc φ M 3 = M 3
82 73 75 81 3eqtr4d φ G + N T 3 = M 3
83 82 oveq1d φ G + N T 3 U 3 = M 3 U 3
84 74 negcld φ G + N
85 expcl U 3 0 U 3
86 11 17 85 sylancl φ U 3
87 11 12 26 expne0d φ U 3 0
88 84 24 86 87 div23d φ G + N T 3 U 3 = G + N U 3 T 3
89 83 88 eqtr3d φ M 3 U 3 = G + N U 3 T 3
90 58 60 89 3eqtrd φ M U 3 = G + N U 3 T 3
91 90 oveq1d φ M U 3 T 3 = G + N U 3 T 3 T 3
92 84 86 87 divcld φ G + N U 3
93 92 24 27 divcan4d φ G + N U 3 T 3 T 3 = G + N U 3
94 56 91 93 3eqtrd φ M U T 3 = G + N U 3
95 94 adantr φ U 3 = G + N M U T 3 = G + N U 3
96 oveq1 U 3 = G + N U 3 U 3 = G + N U 3
97 96 eqcomd U 3 = G + N G + N U 3 = U 3 U 3
98 86 87 dividd φ U 3 U 3 = 1
99 97 98 sylan9eqr φ U 3 = G + N G + N U 3 = 1
100 95 99 eqtrd φ U 3 = G + N M U T 3 = 1
101 52 11 neg2subd φ - M U - U = U M U
102 13 101 eqtr4d φ X = - M U - U
103 102 adantr φ U 3 = G + N X = - M U - U
104 53 4 10 divcan1d φ M U T T = M U
105 104 adantr φ U 3 = G + N M U T T = M U
106 51 11 12 divneg2d φ M U = M U
107 104 106 eqtrd φ M U T T = M U
108 107 adantr φ U 3 = G + N M U T T = M U
109 108 oveq2d φ U 3 = G + N M M U T T = M M U
110 51 adantr φ U 3 = G + N M
111 11 negcld φ U
112 111 adantr φ U 3 = G + N U
113 75 73 eqtrd φ G + N T 3 = M 3
114 113 adantr φ U 3 = G + N G + N T 3 = M 3
115 84 adantr φ U 3 = G + N G + N
116 24 adantr φ U 3 = G + N T 3
117 simpr φ U 3 = G + N U 3 = G + N
118 87 adantr φ U 3 = G + N U 3 0
119 117 118 eqnetrrd φ U 3 = G + N G + N 0
120 27 adantr φ U 3 = G + N T 3 0
121 115 116 119 120 mulne0d φ U 3 = G + N G + N T 3 0
122 114 121 eqnetrrd φ U 3 = G + N M 3 0
123 oveq1 M = 0 M 3 = 0 3
124 0exp 3 0 3 = 0
125 76 124 ax-mp 0 3 = 0
126 123 125 eqtrdi M = 0 M 3 = 0
127 126 negeqd M = 0 M 3 = 0
128 neg0 0 = 0
129 127 128 eqtrdi M = 0 M 3 = 0
130 129 necon3i M 3 0 M 0
131 122 130 syl φ U 3 = G + N M 0
132 11 12 negne0d φ U 0
133 132 adantr φ U 3 = G + N U 0
134 110 112 131 133 ddcand φ U 3 = G + N M M U = U
135 109 134 eqtrd φ U 3 = G + N M M U T T = U
136 105 135 oveq12d φ U 3 = G + N M U T T M M U T T = - M U - U
137 103 136 eqtr4d φ U 3 = G + N X = M U T T M M U T T
138 oveq1 r = M U T r 3 = M U T 3
139 138 eqeq1d r = M U T r 3 = 1 M U T 3 = 1
140 oveq1 r = M U T r T = M U T T
141 140 oveq2d r = M U T M r T = M M U T T
142 140 141 oveq12d r = M U T r T M r T = M U T T M M U T T
143 142 eqeq2d r = M U T X = r T M r T X = M U T T M M U T T
144 139 143 anbi12d r = M U T r 3 = 1 X = r T M r T M U T 3 = 1 X = M U T T M M U T T
145 144 rspcev M U T M U T 3 = 1 X = M U T T M M U T T r r 3 = 1 X = r T M r T
146 55 100 137 145 syl12anc φ U 3 = G + N r r 3 = 1 X = r T M r T
147 86 sqcld φ U 3 2
148 147 mulid2d φ 1 U 3 2 = U 3 2
149 2 86 mulcld φ Q U 3
150 149 70 negsubd φ Q U 3 + M 3 = Q U 3 M 3
151 148 150 oveq12d φ 1 U 3 2 + Q U 3 + M 3 = U 3 2 + Q U 3 - M 3
152 1 2 3 4 5 6 7 8 9 10 11 12 13 dcubic1lem φ X 3 + P X + Q = 0 U 3 2 + Q U 3 - M 3 = 0
153 14 152 mpbid φ U 3 2 + Q U 3 - M 3 = 0
154 151 153 eqtrd φ 1 U 3 2 + Q U 3 + M 3 = 0
155 1cnd φ 1
156 ax-1ne0 1 0
157 156 a1i φ 1 0
158 70 negcld φ M 3
159 2cn 2
160 mulcl 2 G 2 G
161 159 6 160 sylancr φ 2 G
162 sqmul 2 G 2 G 2 = 2 2 G 2
163 159 6 162 sylancr φ 2 G 2 = 2 2 G 2
164 7 oveq2d φ 2 2 G 2 = 2 2 N 2 + M 3
165 159 sqcli 2 2
166 mulcl 2 2 N 2 2 2 N 2
167 165 68 166 sylancr φ 2 2 N 2
168 mulcl 2 2 M 3 2 2 M 3
169 165 70 168 sylancr φ 2 2 M 3
170 167 169 subnegd φ 2 2 N 2 2 2 M 3 = 2 2 N 2 + 2 2 M 3
171 9 oveq2d φ 2 N = 2 Q 2
172 159 a1i φ 2
173 2ne0 2 0
174 173 a1i φ 2 0
175 2 172 174 divcan2d φ 2 Q 2 = Q
176 171 175 eqtrd φ 2 N = Q
177 176 oveq1d φ 2 N 2 = Q 2
178 sqmul 2 N 2 N 2 = 2 2 N 2
179 159 63 178 sylancr φ 2 N 2 = 2 2 N 2
180 177 179 eqtr3d φ Q 2 = 2 2 N 2
181 158 mulid2d φ 1 M 3 = M 3
182 181 oveq2d φ 4 1 M 3 = 4 M 3
183 4cn 4
184 mulneg2 4 M 3 4 M 3 = 4 M 3
185 183 70 184 sylancr φ 4 M 3 = 4 M 3
186 182 185 eqtrd φ 4 1 M 3 = 4 M 3
187 sq2 2 2 = 4
188 187 oveq1i 2 2 M 3 = 4 M 3
189 188 negeqi 2 2 M 3 = 4 M 3
190 186 189 eqtr4di φ 4 1 M 3 = 2 2 M 3
191 180 190 oveq12d φ Q 2 4 1 M 3 = 2 2 N 2 2 2 M 3
192 165 a1i φ 2 2
193 192 68 70 adddid φ 2 2 N 2 + M 3 = 2 2 N 2 + 2 2 M 3
194 170 191 193 3eqtr4rd φ 2 2 N 2 + M 3 = Q 2 4 1 M 3
195 163 164 194 3eqtrd φ 2 G 2 = Q 2 4 1 M 3
196 155 157 2 158 86 161 195 quad2 φ 1 U 3 2 + Q U 3 + M 3 = 0 U 3 = - Q + 2 G 2 1 U 3 = - Q - 2 G 2 1
197 154 196 mpbid φ U 3 = - Q + 2 G 2 1 U 3 = - Q - 2 G 2 1
198 2t1e2 2 1 = 2
199 198 oveq2i - Q + 2 G 2 1 = - Q + 2 G 2
200 2 negcld φ Q
201 200 161 172 174 divdird φ - Q + 2 G 2 = Q 2 + 2 G 2
202 9 negeqd φ N = Q 2
203 2 172 174 divnegd φ Q 2 = Q 2
204 202 203 eqtr2d φ Q 2 = N
205 6 172 174 divcan3d φ 2 G 2 = G
206 204 205 oveq12d φ Q 2 + 2 G 2 = - N + G
207 63 negcld φ N
208 207 6 addcomd φ - N + G = G + -N
209 6 63 negsubd φ G + -N = G N
210 208 209 eqtrd φ - N + G = G N
211 201 206 210 3eqtrd φ - Q + 2 G 2 = G N
212 199 211 syl5eq φ - Q + 2 G 2 1 = G N
213 212 eqeq2d φ U 3 = - Q + 2 G 2 1 U 3 = G N
214 198 oveq2i - Q - 2 G 2 1 = - Q - 2 G 2
215 204 205 oveq12d φ Q 2 2 G 2 = - N - G
216 200 161 172 174 divsubdird φ - Q - 2 G 2 = Q 2 2 G 2
217 6 63 addcomd φ G + N = N + G
218 217 negeqd φ G + N = N + G
219 63 6 negdi2d φ N + G = - N - G
220 218 219 eqtrd φ G + N = - N - G
221 215 216 220 3eqtr4d φ - Q - 2 G 2 = G + N
222 214 221 syl5eq φ - Q - 2 G 2 1 = G + N
223 222 eqeq2d φ U 3 = - Q - 2 G 2 1 U 3 = G + N
224 213 223 orbi12d φ U 3 = - Q + 2 G 2 1 U 3 = - Q - 2 G 2 1 U 3 = G N U 3 = G + N
225 197 224 mpbid φ U 3 = G N U 3 = G + N
226 45 146 225 mpjaodan φ r r 3 = 1 X = r T M r T