Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
ddcan
Next ⟩
divadddiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
ddcan
Description:
Cancellation in a double division.
(Contributed by
Mario Carneiro
, 26-Apr-2015)
Ref
Expression
Assertion
ddcan
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
A
B
=
B
Proof
Step
Hyp
Ref
Expression
1
simpll
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
∈
ℂ
2
simprl
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℂ
3
simprr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
B
≠
0
4
divcan1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
=
A
5
1
2
3
4
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
=
A
6
divcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
7
1
2
3
6
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
8
divne0
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
≠
0
9
divmul
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
B
∈
ℂ
∧
A
B
≠
0
→
A
A
B
=
B
↔
A
B
⁢
B
=
A
10
1
2
7
8
9
syl112anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
A
B
=
B
↔
A
B
⁢
B
=
A
11
5
10
mpbird
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
A
B
=
B