Metamath Proof Explorer


Theorem ddcan

Description: Cancellation in a double division. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion ddcan A A 0 B B 0 A A B = B

Proof

Step Hyp Ref Expression
1 simpll A A 0 B B 0 A
2 simprl A A 0 B B 0 B
3 simprr A A 0 B B 0 B 0
4 divcan1 A B B 0 A B B = A
5 1 2 3 4 syl3anc A A 0 B B 0 A B B = A
6 divcl A B B 0 A B
7 1 2 3 6 syl3anc A A 0 B B 0 A B
8 divne0 A A 0 B B 0 A B 0
9 divmul A B A B A B 0 A A B = B A B B = A
10 1 2 7 8 9 syl112anc A A 0 B B 0 A A B = B A B B = A
11 5 10 mpbird A A 0 B B 0 A A B = B