Metamath Proof Explorer


Theorem ddcand

Description: Cancellation in a double division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divne0d.3 φ A 0
divne0d.4 φ B 0
Assertion ddcand φ A A B = B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divne0d.3 φ A 0
4 divne0d.4 φ B 0
5 ddcan A A 0 B B 0 A A B = B
6 1 3 2 4 5 syl22anc φ A A B = B