Metamath Proof Explorer


Theorem ddif

Description: Double complement under universal class. Exercise 4.10(s) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ddif V V A = A

Proof

Step Hyp Ref Expression
1 vex x V
2 eldif x V A x V ¬ x A
3 1 2 mpbiran x V A ¬ x A
4 3 con2bii x A ¬ x V A
5 1 biantrur ¬ x V A x V ¬ x V A
6 4 5 bitr2i x V ¬ x V A x A
7 6 difeqri V V A = A