Metamath Proof Explorer


Theorem dec2nprm

Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses dec5nprm.1 A
dec2nprm.2 B 0
dec2nprm.3 B 2 = C
Assertion dec2nprm Could not format assertion : No typesetting found for |- -. ; A C e. Prime with typecode |-

Proof

Step Hyp Ref Expression
1 dec5nprm.1 A
2 dec2nprm.2 B 0
3 dec2nprm.3 B 2 = C
4 5nn 5
5 4 1 nnmulcli 5 A
6 nnnn0addcl 5 A B 0 5 A + B
7 5 2 6 mp2an 5 A + B
8 2nn 2
9 1nn0 1 0
10 1lt5 1 < 5
11 4 1 2 9 10 numlti 1 < 5 A + B
12 1lt2 1 < 2
13 4 nncni 5
14 1 nncni A
15 2cn 2
16 13 14 15 mul32i 5 A 2 = 5 2 A
17 5t2e10 5 2 = 10
18 17 oveq1i 5 2 A = 10 A
19 16 18 eqtri 5 A 2 = 10 A
20 19 3 oveq12i 5 A 2 + B 2 = 10 A + C
21 5 nncni 5 A
22 2 nn0cni B
23 21 22 15 adddiri 5 A + B 2 = 5 A 2 + B 2
24 dfdec10 Could not format ; A C = ( ( ; 1 0 x. A ) + C ) : No typesetting found for |- ; A C = ( ( ; 1 0 x. A ) + C ) with typecode |-
25 20 23 24 3eqtr4i Could not format ( ( ( 5 x. A ) + B ) x. 2 ) = ; A C : No typesetting found for |- ( ( ( 5 x. A ) + B ) x. 2 ) = ; A C with typecode |-
26 7 8 11 12 25 nprmi Could not format -. ; A C e. Prime : No typesetting found for |- -. ; A C e. Prime with typecode |-