Metamath Proof Explorer


Theorem decbin0

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 A 0
Assertion decbin0 4 A = 2 2 A

Proof

Step Hyp Ref Expression
1 decbin.1 A 0
2 2t2e4 2 2 = 4
3 2 oveq1i 2 2 A = 4 A
4 2cn 2
5 1 nn0cni A
6 4 4 5 mulassi 2 2 A = 2 2 A
7 3 6 eqtr3i 4 A = 2 2 A