Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal arithmetic
decbin0
Next ⟩
decbin2
Metamath Proof Explorer
Ascii
Unicode
Theorem
decbin0
Description:
Decompose base 4 into base 2.
(Contributed by
Mario Carneiro
, 18-Feb-2014)
Ref
Expression
Hypothesis
decbin.1
⊢
A
∈
ℕ
0
Assertion
decbin0
⊢
4
⁢
A
=
2
⁢
2
⁢
A
Proof
Step
Hyp
Ref
Expression
1
decbin.1
⊢
A
∈
ℕ
0
2
2t2e4
⊢
2
⋅
2
=
4
3
2
oveq1i
⊢
2
⋅
2
⁢
A
=
4
⁢
A
4
2cn
⊢
2
∈
ℂ
5
1
nn0cni
⊢
A
∈
ℂ
6
4
4
5
mulassi
⊢
2
⋅
2
⁢
A
=
2
⁢
2
⁢
A
7
3
6
eqtr3i
⊢
4
⁢
A
=
2
⁢
2
⁢
A