Metamath Proof Explorer


Theorem decbin2

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 A 0
Assertion decbin2 4 A + 2 = 2 2 A + 1

Proof

Step Hyp Ref Expression
1 decbin.1 A 0
2 2t1e2 2 1 = 2
3 2 oveq2i 2 2 A + 2 1 = 2 2 A + 2
4 2cn 2
5 1 nn0cni A
6 4 5 mulcli 2 A
7 ax-1cn 1
8 4 6 7 adddii 2 2 A + 1 = 2 2 A + 2 1
9 1 decbin0 4 A = 2 2 A
10 9 oveq1i 4 A + 2 = 2 2 A + 2
11 3 8 10 3eqtr4ri 4 A + 2 = 2 2 A + 1