Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal arithmetic
decbin2
Next ⟩
decbin3
Metamath Proof Explorer
Ascii
Unicode
Theorem
decbin2
Description:
Decompose base 4 into base 2.
(Contributed by
Mario Carneiro
, 18-Feb-2014)
Ref
Expression
Hypothesis
decbin.1
⊢
A
∈
ℕ
0
Assertion
decbin2
⊢
4
⁢
A
+
2
=
2
⁢
2
⁢
A
+
1
Proof
Step
Hyp
Ref
Expression
1
decbin.1
⊢
A
∈
ℕ
0
2
2t1e2
⊢
2
⋅
1
=
2
3
2
oveq2i
⊢
2
⁢
2
⁢
A
+
2
⋅
1
=
2
⁢
2
⁢
A
+
2
4
2cn
⊢
2
∈
ℂ
5
1
nn0cni
⊢
A
∈
ℂ
6
4
5
mulcli
⊢
2
⁢
A
∈
ℂ
7
ax-1cn
⊢
1
∈
ℂ
8
4
6
7
adddii
⊢
2
⁢
2
⁢
A
+
1
=
2
⁢
2
⁢
A
+
2
⋅
1
9
1
decbin0
⊢
4
⁢
A
=
2
⁢
2
⁢
A
10
9
oveq1i
⊢
4
⁢
A
+
2
=
2
⁢
2
⁢
A
+
2
11
3
8
10
3eqtr4ri
⊢
4
⁢
A
+
2
=
2
⁢
2
⁢
A
+
1