Metamath Proof Explorer


Theorem decbin3

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 A 0
Assertion decbin3 4 A + 3 = 2 2 A + 1 + 1

Proof

Step Hyp Ref Expression
1 decbin.1 A 0
2 4nn0 4 0
3 2nn0 2 0
4 2p1e3 2 + 1 = 3
5 1 decbin2 4 A + 2 = 2 2 A + 1
6 5 eqcomi 2 2 A + 1 = 4 A + 2
7 2 1 3 4 6 numsuc 2 2 A + 1 + 1 = 4 A + 3
8 7 eqcomi 4 A + 3 = 2 2 A + 1 + 1