Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal arithmetic
decbin3
Next ⟩
halfthird
Metamath Proof Explorer
Ascii
Unicode
Theorem
decbin3
Description:
Decompose base 4 into base 2.
(Contributed by
Mario Carneiro
, 18-Feb-2014)
Ref
Expression
Hypothesis
decbin.1
⊢
A
∈
ℕ
0
Assertion
decbin3
⊢
4
⁢
A
+
3
=
2
⁢
2
⁢
A
+
1
+
1
Proof
Step
Hyp
Ref
Expression
1
decbin.1
⊢
A
∈
ℕ
0
2
4nn0
⊢
4
∈
ℕ
0
3
2nn0
⊢
2
∈
ℕ
0
4
2p1e3
⊢
2
+
1
=
3
5
1
decbin2
⊢
4
⁢
A
+
2
=
2
⁢
2
⁢
A
+
1
6
5
eqcomi
⊢
2
⁢
2
⁢
A
+
1
=
4
⁢
A
+
2
7
2
1
3
4
6
numsuc
⊢
2
⁢
2
⁢
A
+
1
+
1
=
4
⁢
A
+
3
8
7
eqcomi
⊢
4
⁢
A
+
3
=
2
⁢
2
⁢
A
+
1
+
1