Metamath Proof Explorer


Theorem decle

Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypotheses decle.1 A 0
decle.2 B 0
decle.3 C 0
decle.4 B C
Assertion decle Could not format assertion : No typesetting found for |- ; A B <_ ; A C with typecode |-

Proof

Step Hyp Ref Expression
1 decle.1 A 0
2 decle.2 B 0
3 decle.3 C 0
4 decle.4 B C
5 2 nn0rei B
6 3 nn0rei C
7 10nn0 10 0
8 7 1 nn0mulcli 10 A 0
9 8 nn0rei 10 A
10 5 6 9 leadd2i B C 10 A + B 10 A + C
11 4 10 mpbi 10 A + B 10 A + C
12 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
13 dfdec10 Could not format ; A C = ( ( ; 1 0 x. A ) + C ) : No typesetting found for |- ; A C = ( ( ; 1 0 x. A ) + C ) with typecode |-
14 11 12 13 3brtr4i Could not format ; A B <_ ; A C : No typesetting found for |- ; A B <_ ; A C with typecode |-