Metamath Proof Explorer


Theorem decleh

Description: Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypotheses decle.1 A 0
decle.2 B 0
decle.3 C 0
decleh.4 D 0
decleh.5 C 9
decleh.6 A < B
Assertion decleh Could not format assertion : No typesetting found for |- ; A C <_ ; B D with typecode |-

Proof

Step Hyp Ref Expression
1 decle.1 A 0
2 decle.2 B 0
3 decle.3 C 0
4 decleh.4 D 0
5 decleh.5 C 9
6 decleh.6 A < B
7 1 3 deccl Could not format ; A C e. NN0 : No typesetting found for |- ; A C e. NN0 with typecode |-
8 7 nn0rei Could not format ; A C e. RR : No typesetting found for |- ; A C e. RR with typecode |-
9 2 4 deccl Could not format ; B D e. NN0 : No typesetting found for |- ; B D e. NN0 with typecode |-
10 9 nn0rei Could not format ; B D e. RR : No typesetting found for |- ; B D e. RR with typecode |-
11 1 2 3 4 5 6 declth Could not format ; A C < ; B D : No typesetting found for |- ; A C < ; B D with typecode |-
12 8 10 11 ltleii Could not format ; A C <_ ; B D : No typesetting found for |- ; A C <_ ; B D with typecode |-