Metamath Proof Explorer


Theorem declti

Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses declti.a A
declti.b B 0
declti.c C 0
declti.l C < 10
Assertion declti Could not format assertion : No typesetting found for |- C < ; A B with typecode |-

Proof

Step Hyp Ref Expression
1 declti.a A
2 declti.b B 0
3 declti.c C 0
4 declti.l C < 10
5 10nn 10
6 5 1 2 3 4 numlti C < 10 A + B
7 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
8 6 7 breqtrri Could not format C < ; A B : No typesetting found for |- C < ; A B with typecode |-