Metamath Proof Explorer


Theorem decmul1

Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021) (Revised by AV, 6-Sep-2021) Remove hypothesis D e. NN0 . (Revised by Steven Nguyen, 7-Dec-2022)

Ref Expression
Hypotheses decmul1.p P 0
decmul1.a A 0
decmul1.b B 0
decmul1.n No typesetting found for |- N = ; A B with typecode |-
decmul1.c A P = C
decmul1.d B P = D
Assertion decmul1 Could not format assertion : No typesetting found for |- ( N x. P ) = ; C D with typecode |-

Proof

Step Hyp Ref Expression
1 decmul1.p P 0
2 decmul1.a A 0
3 decmul1.b B 0
4 decmul1.n Could not format N = ; A B : No typesetting found for |- N = ; A B with typecode |-
5 decmul1.c A P = C
6 decmul1.d B P = D
7 2 3 deccl Could not format ; A B e. NN0 : No typesetting found for |- ; A B e. NN0 with typecode |-
8 4 7 eqeltri N 0
9 8 1 num0u N P = N P + 0
10 0nn0 0 0
11 3 1 nn0mulcli B P 0
12 11 nn0cni B P
13 12 addid1i B P + 0 = B P
14 13 6 eqtri B P + 0 = D
15 2 3 10 4 1 5 14 decrmanc Could not format ( ( N x. P ) + 0 ) = ; C D : No typesetting found for |- ( ( N x. P ) + 0 ) = ; C D with typecode |-
16 9 15 eqtri Could not format ( N x. P ) = ; C D : No typesetting found for |- ( N x. P ) = ; C D with typecode |-