Metamath Proof Explorer


Theorem decmul10add

Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses decmul10add.1 A 0
decmul10add.2 B 0
decmul10add.3 M 0
decmul10add.4 E = M A
decmul10add.5 F = M B
Assertion decmul10add Could not format assertion : No typesetting found for |- ( M x. ; A B ) = ( ; E 0 + F ) with typecode |-

Proof

Step Hyp Ref Expression
1 decmul10add.1 A 0
2 decmul10add.2 B 0
3 decmul10add.3 M 0
4 decmul10add.4 E = M A
5 decmul10add.5 F = M B
6 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
7 6 oveq2i Could not format ( M x. ; A B ) = ( M x. ( ( ; 1 0 x. A ) + B ) ) : No typesetting found for |- ( M x. ; A B ) = ( M x. ( ( ; 1 0 x. A ) + B ) ) with typecode |-
8 3 nn0cni M
9 10nn0 10 0
10 9 1 nn0mulcli 10 A 0
11 10 nn0cni 10 A
12 2 nn0cni B
13 8 11 12 adddii M 10 A + B = M 10 A + M B
14 9 nn0cni 10
15 1 nn0cni A
16 8 14 15 mul12i M 10 A = 10 M A
17 3 1 nn0mulcli M A 0
18 17 dec0u Could not format ( ; 1 0 x. ( M x. A ) ) = ; ( M x. A ) 0 : No typesetting found for |- ( ; 1 0 x. ( M x. A ) ) = ; ( M x. A ) 0 with typecode |-
19 4 eqcomi M A = E
20 19 deceq1i Could not format ; ( M x. A ) 0 = ; E 0 : No typesetting found for |- ; ( M x. A ) 0 = ; E 0 with typecode |-
21 16 18 20 3eqtri Could not format ( M x. ( ; 1 0 x. A ) ) = ; E 0 : No typesetting found for |- ( M x. ( ; 1 0 x. A ) ) = ; E 0 with typecode |-
22 5 eqcomi M B = F
23 21 22 oveq12i Could not format ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) = ( ; E 0 + F ) : No typesetting found for |- ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) = ( ; E 0 + F ) with typecode |-
24 7 13 23 3eqtri Could not format ( M x. ; A B ) = ( ; E 0 + F ) : No typesetting found for |- ( M x. ; A B ) = ( ; E 0 + F ) with typecode |-