Metamath Proof Explorer


Theorem decnncl

Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypotheses decnncl.1 A 0
decnncl.2 B
Assertion decnncl Could not format assertion : No typesetting found for |- ; A B e. NN with typecode |-

Proof

Step Hyp Ref Expression
1 decnncl.1 A 0
2 decnncl.2 B
3 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
4 10nn0 10 0
5 4 1 2 numnncl 10 A + B
6 3 5 eqeltri Could not format ; A B e. NN : No typesetting found for |- ; A B e. NN with typecode |-