Metamath Proof Explorer


Theorem decnncl2

Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Hypothesis decnncl2.1 A
Assertion decnncl2 Could not format assertion : No typesetting found for |- ; A 0 e. NN with typecode |-

Proof

Step Hyp Ref Expression
1 decnncl2.1 A
2 dfdec10 Could not format ; A 0 = ( ( ; 1 0 x. A ) + 0 ) : No typesetting found for |- ; A 0 = ( ( ; 1 0 x. A ) + 0 ) with typecode |-
3 10nn 10
4 3 1 numnncl2 10 A + 0
5 2 4 eqeltri Could not format ; A 0 e. NN : No typesetting found for |- ; A 0 e. NN with typecode |-