Step |
Hyp |
Ref |
Expression |
1 |
|
decpmate.p |
|
2 |
|
decpmate.c |
|
3 |
|
decpmate.b |
|
4 |
|
decpmatcl.a |
|
5 |
|
decpmatfsupp.0 |
|
6 |
2 3
|
matrcl |
|
7 |
6
|
simpld |
|
8 |
7
|
adantl |
|
9 |
|
simpl |
|
10 |
|
simpr |
|
11 |
|
eqid |
|
12 |
1 2 3 11
|
pmatcoe1fsupp |
|
13 |
8 9 10 12
|
syl3anc |
|
14 |
|
eqid |
|
15 |
1 2 3 4 14
|
decpmatcl |
|
16 |
15
|
3expa |
|
17 |
8 9
|
jca |
|
18 |
4
|
matring |
|
19 |
14 5
|
ring0cl |
|
20 |
17 18 19
|
3syl |
|
21 |
20
|
adantr |
|
22 |
4 14
|
eqmat |
|
23 |
16 21 22
|
syl2anc |
|
24 |
|
df-3an |
|
25 |
1 2 3
|
decpmate |
|
26 |
24 25
|
sylanbr |
|
27 |
17
|
adantr |
|
28 |
27
|
adantr |
|
29 |
4 11
|
mat0op |
|
30 |
5 29
|
syl5eq |
|
31 |
28 30
|
syl |
|
32 |
|
eqidd |
|
33 |
|
simpl |
|
34 |
33
|
adantl |
|
35 |
|
simpr |
|
36 |
35
|
adantl |
|
37 |
|
fvexd |
|
38 |
31 32 34 36 37
|
ovmpod |
|
39 |
26 38
|
eqeq12d |
|
40 |
39
|
2ralbidva |
|
41 |
23 40
|
bitrd |
|
42 |
41
|
imbi2d |
|
43 |
42
|
ralbidva |
|
44 |
43
|
rexbidv |
|
45 |
13 44
|
mpbird |
|