| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmate.p |
|
| 2 |
|
decpmate.c |
|
| 3 |
|
decpmate.b |
|
| 4 |
|
decpmatcl.a |
|
| 5 |
|
decpmatfsupp.0 |
|
| 6 |
2 3
|
matrcl |
|
| 7 |
6
|
simpld |
|
| 8 |
7
|
adantl |
|
| 9 |
|
simpl |
|
| 10 |
|
simpr |
|
| 11 |
|
eqid |
|
| 12 |
1 2 3 11
|
pmatcoe1fsupp |
|
| 13 |
8 9 10 12
|
syl3anc |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 4 14
|
decpmatcl |
|
| 16 |
15
|
3expa |
|
| 17 |
8 9
|
jca |
|
| 18 |
4
|
matring |
|
| 19 |
14 5
|
ring0cl |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
20
|
adantr |
|
| 22 |
4 14
|
eqmat |
|
| 23 |
16 21 22
|
syl2anc |
|
| 24 |
|
df-3an |
|
| 25 |
1 2 3
|
decpmate |
|
| 26 |
24 25
|
sylanbr |
|
| 27 |
17
|
adantr |
|
| 28 |
27
|
adantr |
|
| 29 |
4 11
|
mat0op |
|
| 30 |
5 29
|
eqtrid |
|
| 31 |
28 30
|
syl |
|
| 32 |
|
eqidd |
|
| 33 |
|
simpl |
|
| 34 |
33
|
adantl |
|
| 35 |
|
simpr |
|
| 36 |
35
|
adantl |
|
| 37 |
|
fvexd |
|
| 38 |
31 32 34 36 37
|
ovmpod |
|
| 39 |
26 38
|
eqeq12d |
|
| 40 |
39
|
2ralbidva |
|
| 41 |
23 40
|
bitrd |
|
| 42 |
41
|
imbi2d |
|
| 43 |
42
|
ralbidva |
|
| 44 |
43
|
rexbidv |
|
| 45 |
13 44
|
mpbird |
|