Metamath Proof Explorer


Theorem decpmatcl

Description: Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmate.p P=Poly1R
decpmate.c C=NMatP
decpmate.b B=BaseC
decpmatcl.a A=NMatR
decpmatcl.d D=BaseA
Assertion decpmatcl RVMBK0MdecompPMatKD

Proof

Step Hyp Ref Expression
1 decpmate.p P=Poly1R
2 decpmate.c C=NMatP
3 decpmate.b B=BaseC
4 decpmatcl.a A=NMatR
5 decpmatcl.d D=BaseA
6 2 3 decpmatval MBK0MdecompPMatK=iN,jNcoe1iMjK
7 6 3adant1 RVMBK0MdecompPMatK=iN,jNcoe1iMjK
8 eqid BaseR=BaseR
9 2 3 matrcl MBNFinPV
10 9 simpld MBNFin
11 10 3ad2ant2 RVMBK0NFin
12 simp1 RVMBK0RV
13 eqid BaseP=BaseP
14 simp2 RVMBK0iNjNiN
15 simp3 RVMBK0iNjNjN
16 simp2 RVMBK0MB
17 16 3ad2ant1 RVMBK0iNjNMB
18 2 13 3 14 15 17 matecld RVMBK0iNjNiMjBaseP
19 simp3 RVMBK0K0
20 19 3ad2ant1 RVMBK0iNjNK0
21 eqid coe1iMj=coe1iMj
22 21 13 1 8 coe1fvalcl iMjBasePK0coe1iMjKBaseR
23 18 20 22 syl2anc RVMBK0iNjNcoe1iMjKBaseR
24 4 8 5 11 12 23 matbas2d RVMBK0iN,jNcoe1iMjKD
25 7 24 eqeltrd RVMBK0MdecompPMatKD