Metamath Proof Explorer


Theorem decpmatcl

Description: Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmate.p P = Poly 1 R
decpmate.c C = N Mat P
decpmate.b B = Base C
decpmatcl.a A = N Mat R
decpmatcl.d D = Base A
Assertion decpmatcl R V M B K 0 M decompPMat K D

Proof

Step Hyp Ref Expression
1 decpmate.p P = Poly 1 R
2 decpmate.c C = N Mat P
3 decpmate.b B = Base C
4 decpmatcl.a A = N Mat R
5 decpmatcl.d D = Base A
6 2 3 decpmatval M B K 0 M decompPMat K = i N , j N coe 1 i M j K
7 6 3adant1 R V M B K 0 M decompPMat K = i N , j N coe 1 i M j K
8 eqid Base R = Base R
9 2 3 matrcl M B N Fin P V
10 9 simpld M B N Fin
11 10 3ad2ant2 R V M B K 0 N Fin
12 simp1 R V M B K 0 R V
13 eqid Base P = Base P
14 simp2 R V M B K 0 i N j N i N
15 simp3 R V M B K 0 i N j N j N
16 simp2 R V M B K 0 M B
17 16 3ad2ant1 R V M B K 0 i N j N M B
18 2 13 3 14 15 17 matecld R V M B K 0 i N j N i M j Base P
19 simp3 R V M B K 0 K 0
20 19 3ad2ant1 R V M B K 0 i N j N K 0
21 eqid coe 1 i M j = coe 1 i M j
22 21 13 1 8 coe1fvalcl i M j Base P K 0 coe 1 i M j K Base R
23 18 20 22 syl2anc R V M B K 0 i N j N coe 1 i M j K Base R
24 4 8 5 11 12 23 matbas2d R V M B K 0 i N , j N coe 1 i M j K D
25 7 24 eqeltrd R V M B K 0 M decompPMat K D