Metamath Proof Explorer


Theorem decpmate

Description: An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmate.p P = Poly 1 R
decpmate.c C = N Mat P
decpmate.b B = Base C
Assertion decpmate R V M B K 0 I N J N I M decompPMat K J = coe 1 I M J K

Proof

Step Hyp Ref Expression
1 decpmate.p P = Poly 1 R
2 decpmate.c C = N Mat P
3 decpmate.b B = Base C
4 2 3 decpmatval M B K 0 M decompPMat K = i N , j N coe 1 i M j K
5 4 3adant1 R V M B K 0 M decompPMat K = i N , j N coe 1 i M j K
6 5 adantr R V M B K 0 I N J N M decompPMat K = i N , j N coe 1 i M j K
7 oveq12 i = I j = J i M j = I M J
8 7 fveq2d i = I j = J coe 1 i M j = coe 1 I M J
9 8 fveq1d i = I j = J coe 1 i M j K = coe 1 I M J K
10 9 adantl R V M B K 0 I N J N i = I j = J coe 1 i M j K = coe 1 I M J K
11 simprl R V M B K 0 I N J N I N
12 simprr R V M B K 0 I N J N J N
13 fvexd R V M B K 0 I N J N coe 1 I M J K V
14 6 10 11 12 13 ovmpod R V M B K 0 I N J N I M decompPMat K J = coe 1 I M J K