Metamath Proof Explorer


Theorem decpmatfsupp

Description: The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmate.p P = Poly 1 R
decpmate.c C = N Mat P
decpmate.b B = Base C
decpmatcl.a A = N Mat R
decpmatfsupp.0 0 ˙ = 0 A
Assertion decpmatfsupp R Ring M B finSupp 0 ˙ k 0 M decompPMat k

Proof

Step Hyp Ref Expression
1 decpmate.p P = Poly 1 R
2 decpmate.c C = N Mat P
3 decpmate.b B = Base C
4 decpmatcl.a A = N Mat R
5 decpmatfsupp.0 0 ˙ = 0 A
6 5 fvexi 0 ˙ V
7 6 a1i R Ring M B 0 ˙ V
8 ovexd R Ring M B k 0 M decompPMat k V
9 oveq2 k = x M decompPMat k = M decompPMat x
10 1 2 3 4 5 decpmataa0 R Ring M B s 0 x 0 s < x M decompPMat x = 0 ˙
11 7 8 9 10 mptnn0fsuppd R Ring M B finSupp 0 ˙ k 0 M decompPMat k