Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatmul.p |
|
2 |
|
decpmatmul.c |
|
3 |
|
decpmatmul.b |
|
4 |
|
decpmatmul.a |
|
5 |
|
eqidd |
|
6 |
|
oveq1 |
|
7 |
|
oveq2 |
|
8 |
6 7
|
oveqan12d |
|
9 |
8
|
mpteq2dv |
|
10 |
9
|
oveq2d |
|
11 |
10
|
mpteq2dv |
|
12 |
11
|
oveq2d |
|
13 |
12
|
adantl |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
|
ovexd |
|
17 |
5 13 14 15 16
|
ovmpod |
|
18 |
2 3
|
matrcl |
|
19 |
18
|
simpld |
|
20 |
19
|
adantr |
|
21 |
20
|
anim2i |
|
22 |
21
|
ancomd |
|
23 |
22
|
3adant3 |
|
24 |
|
eqid |
|
25 |
4 24
|
matmulr |
|
26 |
23 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
27
|
adantr |
|
29 |
28
|
eqcomd |
|
30 |
29
|
oveqd |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
simp1 |
|
34 |
33
|
adantr |
|
35 |
34
|
adantr |
|
36 |
23
|
simpld |
|
37 |
36
|
adantr |
|
38 |
37
|
adantr |
|
39 |
|
simpl2l |
|
40 |
39
|
adantr |
|
41 |
|
elfznn0 |
|
42 |
41
|
adantl |
|
43 |
35 40 42
|
3jca |
|
44 |
|
eqid |
|
45 |
1 2 3 4 44
|
decpmatcl |
|
46 |
43 45
|
syl |
|
47 |
4 31 44
|
matbas2i |
|
48 |
46 47
|
syl |
|
49 |
|
simpl2r |
|
50 |
49
|
adantr |
|
51 |
|
fznn0sub |
|
52 |
51
|
adantl |
|
53 |
35 50 52
|
3jca |
|
54 |
1 2 3 4 44
|
decpmatcl |
|
55 |
53 54
|
syl |
|
56 |
4 31 44
|
matbas2i |
|
57 |
55 56
|
syl |
|
58 |
24 31 32 35 38 38 38 48 57
|
mamuval |
|
59 |
30 58
|
eqtrd |
|
60 |
59
|
mpteq2dva |
|
61 |
60
|
oveq2d |
|
62 |
|
eqid |
|
63 |
|
ovexd |
|
64 |
|
ringcmn |
|
65 |
33 64
|
syl |
|
66 |
65
|
adantr |
|
67 |
66
|
adantr |
|
68 |
67
|
3ad2ant1 |
|
69 |
38
|
3ad2ant1 |
|
70 |
35
|
3ad2ant1 |
|
71 |
70
|
adantr |
|
72 |
|
simpl2 |
|
73 |
|
simpr |
|
74 |
43
|
3ad2ant1 |
|
75 |
74
|
adantr |
|
76 |
75 45
|
syl |
|
77 |
4 31 44 72 73 76
|
matecld |
|
78 |
|
simpl3 |
|
79 |
55
|
3ad2ant1 |
|
80 |
79
|
adantr |
|
81 |
4 31 44 73 78 80
|
matecld |
|
82 |
31 32
|
ringcl |
|
83 |
71 77 81 82
|
syl3anc |
|
84 |
83
|
ralrimiva |
|
85 |
31 68 69 84
|
gsummptcl |
|
86 |
4 31 44 38 35 85
|
matbas2d |
|
87 |
|
eqid |
|
88 |
|
fzfid |
|
89 |
|
simpl |
|
90 |
89 89
|
jca |
|
91 |
18 90
|
syl |
|
92 |
91
|
adantr |
|
93 |
92
|
3ad2ant2 |
|
94 |
93
|
adantr |
|
95 |
94
|
adantr |
|
96 |
|
mpoexga |
|
97 |
95 96
|
syl |
|
98 |
|
fvexd |
|
99 |
87 88 97 98
|
fsuppmptdm |
|
100 |
4 44 62 37 63 34 86 99
|
matgsum |
|
101 |
61 100
|
eqtrd |
|
102 |
101
|
oveqd |
|
103 |
|
simpl2 |
|
104 |
|
simpl3 |
|
105 |
1 2 3
|
decpmatmullem |
|
106 |
37 34 103 14 15 104 105
|
syl213anc |
|
107 |
|
simpll1 |
|
108 |
|
simplrl |
|
109 |
|
simprl |
|
110 |
3
|
eleq2i |
|
111 |
110
|
biimpi |
|
112 |
111
|
adantr |
|
113 |
112
|
3ad2ant2 |
|
114 |
113
|
adantr |
|
115 |
114
|
adantr |
|
116 |
|
eqid |
|
117 |
2 116
|
matecl |
|
118 |
108 109 115 117
|
syl3anc |
|
119 |
41
|
ad2antll |
|
120 |
|
eqid |
|
121 |
120 116 1 31
|
coe1fvalcl |
|
122 |
118 119 121
|
syl2anc |
|
123 |
|
simplrr |
|
124 |
49
|
adantr |
|
125 |
2 116 3 109 123 124
|
matecld |
|
126 |
51
|
ad2antll |
|
127 |
|
eqid |
|
128 |
127 116 1 31
|
coe1fvalcl |
|
129 |
125 126 128
|
syl2anc |
|
130 |
31 32
|
ringcl |
|
131 |
107 122 129 130
|
syl3anc |
|
132 |
31 66 37 88 131
|
gsumcom3fi |
|
133 |
14
|
adantr |
|
134 |
133
|
anim1i |
|
135 |
1 2 3
|
decpmate |
|
136 |
43 134 135
|
syl2an2r |
|
137 |
|
simplrr |
|
138 |
137
|
anim1ci |
|
139 |
1 2 3
|
decpmate |
|
140 |
53 138 139
|
syl2an2r |
|
141 |
136 140
|
oveq12d |
|
142 |
141
|
eqcomd |
|
143 |
142
|
mpteq2dva |
|
144 |
143
|
oveq2d |
|
145 |
144
|
mpteq2dva |
|
146 |
145
|
oveq2d |
|
147 |
106 132 146
|
3eqtrd |
|
148 |
17 102 147
|
3eqtr4rd |
|
149 |
148
|
ralrimivva |
|
150 |
1 2
|
pmatring |
|
151 |
22 150
|
syl |
|
152 |
|
simprl |
|
153 |
|
simprr |
|
154 |
|
eqid |
|
155 |
3 154
|
ringcl |
|
156 |
151 152 153 155
|
syl3anc |
|
157 |
156
|
3adant3 |
|
158 |
1 2 3 4 44
|
decpmatcl |
|
159 |
157 158
|
syld3an2 |
|
160 |
4
|
matring |
|
161 |
23 160
|
syl |
|
162 |
|
ringcmn |
|
163 |
161 162
|
syl |
|
164 |
|
fzfid |
|
165 |
161
|
adantr |
|
166 |
33
|
adantr |
|
167 |
|
simpl2l |
|
168 |
41
|
adantl |
|
169 |
166 167 168
|
3jca |
|
170 |
169 45
|
syl |
|
171 |
|
simpl2r |
|
172 |
51
|
adantl |
|
173 |
166 171 172
|
3jca |
|
174 |
173 54
|
syl |
|
175 |
|
eqid |
|
176 |
44 175
|
ringcl |
|
177 |
165 170 174 176
|
syl3anc |
|
178 |
177
|
ralrimiva |
|
179 |
44 163 164 178
|
gsummptcl |
|
180 |
4 44
|
eqmat |
|
181 |
159 179 180
|
syl2anc |
|
182 |
149 181
|
mpbird |
|