Metamath Proof Explorer


Theorem decpmatmul

Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmatmul.p P = Poly 1 R
decpmatmul.c C = N Mat P
decpmatmul.b B = Base C
decpmatmul.a A = N Mat R
Assertion decpmatmul R Ring U B W B K 0 U C W decompPMat K = A k = 0 K U decompPMat k A W decompPMat K k

Proof

Step Hyp Ref Expression
1 decpmatmul.p P = Poly 1 R
2 decpmatmul.c C = N Mat P
3 decpmatmul.b B = Base C
4 decpmatmul.a A = N Mat R
5 eqidd R Ring U B W B K 0 i N j N x N , y N R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y = x N , y N R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y
6 oveq1 x = i x U decompPMat k t = i U decompPMat k t
7 oveq2 y = j t W decompPMat K k y = t W decompPMat K k j
8 6 7 oveqan12d x = i y = j x U decompPMat k t R t W decompPMat K k y = i U decompPMat k t R t W decompPMat K k j
9 8 mpteq2dv x = i y = j t N x U decompPMat k t R t W decompPMat K k y = t N i U decompPMat k t R t W decompPMat K k j
10 9 oveq2d x = i y = j R t N x U decompPMat k t R t W decompPMat K k y = R t N i U decompPMat k t R t W decompPMat K k j
11 10 mpteq2dv x = i y = j k 0 K R t N x U decompPMat k t R t W decompPMat K k y = k 0 K R t N i U decompPMat k t R t W decompPMat K k j
12 11 oveq2d x = i y = j R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y = R k = 0 K R t N i U decompPMat k t R t W decompPMat K k j
13 12 adantl R Ring U B W B K 0 i N j N x = i y = j R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y = R k = 0 K R t N i U decompPMat k t R t W decompPMat K k j
14 simprl R Ring U B W B K 0 i N j N i N
15 simprr R Ring U B W B K 0 i N j N j N
16 ovexd R Ring U B W B K 0 i N j N R k = 0 K R t N i U decompPMat k t R t W decompPMat K k j V
17 5 13 14 15 16 ovmpod R Ring U B W B K 0 i N j N i x N , y N R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y j = R k = 0 K R t N i U decompPMat k t R t W decompPMat K k j
18 2 3 matrcl U B N Fin P V
19 18 simpld U B N Fin
20 19 adantr U B W B N Fin
21 20 anim2i R Ring U B W B R Ring N Fin
22 21 ancomd R Ring U B W B N Fin R Ring
23 22 3adant3 R Ring U B W B K 0 N Fin R Ring
24 eqid R maMul N N N = R maMul N N N
25 4 24 matmulr N Fin R Ring R maMul N N N = A
26 23 25 syl R Ring U B W B K 0 R maMul N N N = A
27 26 adantr R Ring U B W B K 0 i N j N R maMul N N N = A
28 27 adantr R Ring U B W B K 0 i N j N k 0 K R maMul N N N = A
29 28 eqcomd R Ring U B W B K 0 i N j N k 0 K A = R maMul N N N
30 29 oveqd R Ring U B W B K 0 i N j N k 0 K U decompPMat k A W decompPMat K k = U decompPMat k R maMul N N N W decompPMat K k
31 eqid Base R = Base R
32 eqid R = R
33 simp1 R Ring U B W B K 0 R Ring
34 33 adantr R Ring U B W B K 0 i N j N R Ring
35 34 adantr R Ring U B W B K 0 i N j N k 0 K R Ring
36 23 simpld R Ring U B W B K 0 N Fin
37 36 adantr R Ring U B W B K 0 i N j N N Fin
38 37 adantr R Ring U B W B K 0 i N j N k 0 K N Fin
39 simpl2l R Ring U B W B K 0 i N j N U B
40 39 adantr R Ring U B W B K 0 i N j N k 0 K U B
41 elfznn0 k 0 K k 0
42 41 adantl R Ring U B W B K 0 i N j N k 0 K k 0
43 35 40 42 3jca R Ring U B W B K 0 i N j N k 0 K R Ring U B k 0
44 eqid Base A = Base A
45 1 2 3 4 44 decpmatcl R Ring U B k 0 U decompPMat k Base A
46 43 45 syl R Ring U B W B K 0 i N j N k 0 K U decompPMat k Base A
47 4 31 44 matbas2i U decompPMat k Base A U decompPMat k Base R N × N
48 46 47 syl R Ring U B W B K 0 i N j N k 0 K U decompPMat k Base R N × N
49 simpl2r R Ring U B W B K 0 i N j N W B
50 49 adantr R Ring U B W B K 0 i N j N k 0 K W B
51 fznn0sub k 0 K K k 0
52 51 adantl R Ring U B W B K 0 i N j N k 0 K K k 0
53 35 50 52 3jca R Ring U B W B K 0 i N j N k 0 K R Ring W B K k 0
54 1 2 3 4 44 decpmatcl R Ring W B K k 0 W decompPMat K k Base A
55 53 54 syl R Ring U B W B K 0 i N j N k 0 K W decompPMat K k Base A
56 4 31 44 matbas2i W decompPMat K k Base A W decompPMat K k Base R N × N
57 55 56 syl R Ring U B W B K 0 i N j N k 0 K W decompPMat K k Base R N × N
58 24 31 32 35 38 38 38 48 57 mamuval R Ring U B W B K 0 i N j N k 0 K U decompPMat k R maMul N N N W decompPMat K k = x N , y N R t N x U decompPMat k t R t W decompPMat K k y
59 30 58 eqtrd R Ring U B W B K 0 i N j N k 0 K U decompPMat k A W decompPMat K k = x N , y N R t N x U decompPMat k t R t W decompPMat K k y
60 59 mpteq2dva R Ring U B W B K 0 i N j N k 0 K U decompPMat k A W decompPMat K k = k 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y
61 60 oveq2d R Ring U B W B K 0 i N j N A k = 0 K U decompPMat k A W decompPMat K k = A k = 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y
62 eqid 0 A = 0 A
63 ovexd R Ring U B W B K 0 i N j N 0 K V
64 ringcmn R Ring R CMnd
65 33 64 syl R Ring U B W B K 0 R CMnd
66 65 adantr R Ring U B W B K 0 i N j N R CMnd
67 66 adantr R Ring U B W B K 0 i N j N k 0 K R CMnd
68 67 3ad2ant1 R Ring U B W B K 0 i N j N k 0 K x N y N R CMnd
69 38 3ad2ant1 R Ring U B W B K 0 i N j N k 0 K x N y N N Fin
70 35 3ad2ant1 R Ring U B W B K 0 i N j N k 0 K x N y N R Ring
71 70 adantr R Ring U B W B K 0 i N j N k 0 K x N y N t N R Ring
72 simpl2 R Ring U B W B K 0 i N j N k 0 K x N y N t N x N
73 simpr R Ring U B W B K 0 i N j N k 0 K x N y N t N t N
74 43 3ad2ant1 R Ring U B W B K 0 i N j N k 0 K x N y N R Ring U B k 0
75 74 adantr R Ring U B W B K 0 i N j N k 0 K x N y N t N R Ring U B k 0
76 75 45 syl R Ring U B W B K 0 i N j N k 0 K x N y N t N U decompPMat k Base A
77 4 31 44 72 73 76 matecld R Ring U B W B K 0 i N j N k 0 K x N y N t N x U decompPMat k t Base R
78 simpl3 R Ring U B W B K 0 i N j N k 0 K x N y N t N y N
79 55 3ad2ant1 R Ring U B W B K 0 i N j N k 0 K x N y N W decompPMat K k Base A
80 79 adantr R Ring U B W B K 0 i N j N k 0 K x N y N t N W decompPMat K k Base A
81 4 31 44 73 78 80 matecld R Ring U B W B K 0 i N j N k 0 K x N y N t N t W decompPMat K k y Base R
82 31 32 ringcl R Ring x U decompPMat k t Base R t W decompPMat K k y Base R x U decompPMat k t R t W decompPMat K k y Base R
83 71 77 81 82 syl3anc R Ring U B W B K 0 i N j N k 0 K x N y N t N x U decompPMat k t R t W decompPMat K k y Base R
84 83 ralrimiva R Ring U B W B K 0 i N j N k 0 K x N y N t N x U decompPMat k t R t W decompPMat K k y Base R
85 31 68 69 84 gsummptcl R Ring U B W B K 0 i N j N k 0 K x N y N R t N x U decompPMat k t R t W decompPMat K k y Base R
86 4 31 44 38 35 85 matbas2d R Ring U B W B K 0 i N j N k 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y Base A
87 eqid k 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y = k 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y
88 fzfid R Ring U B W B K 0 i N j N 0 K Fin
89 simpl N Fin P V N Fin
90 89 89 jca N Fin P V N Fin N Fin
91 18 90 syl U B N Fin N Fin
92 91 adantr U B W B N Fin N Fin
93 92 3ad2ant2 R Ring U B W B K 0 N Fin N Fin
94 93 adantr R Ring U B W B K 0 i N j N N Fin N Fin
95 94 adantr R Ring U B W B K 0 i N j N k 0 K N Fin N Fin
96 mpoexga N Fin N Fin x N , y N R t N x U decompPMat k t R t W decompPMat K k y V
97 95 96 syl R Ring U B W B K 0 i N j N k 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y V
98 fvexd R Ring U B W B K 0 i N j N 0 A V
99 87 88 97 98 fsuppmptdm R Ring U B W B K 0 i N j N finSupp 0 A k 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y
100 4 44 62 37 63 34 86 99 matgsum R Ring U B W B K 0 i N j N A k = 0 K x N , y N R t N x U decompPMat k t R t W decompPMat K k y = x N , y N R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y
101 61 100 eqtrd R Ring U B W B K 0 i N j N A k = 0 K U decompPMat k A W decompPMat K k = x N , y N R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y
102 101 oveqd R Ring U B W B K 0 i N j N i A k = 0 K U decompPMat k A W decompPMat K k j = i x N , y N R k = 0 K R t N x U decompPMat k t R t W decompPMat K k y j
103 simpl2 R Ring U B W B K 0 i N j N U B W B
104 simpl3 R Ring U B W B K 0 i N j N K 0
105 1 2 3 decpmatmullem N Fin R Ring U B W B i N j N K 0 i U C W decompPMat K j = R t N R k = 0 K coe 1 i U t k R coe 1 t W j K k
106 37 34 103 14 15 104 105 syl213anc R Ring U B W B K 0 i N j N i U C W decompPMat K j = R t N R k = 0 K coe 1 i U t k R coe 1 t W j K k
107 simpll1 R Ring U B W B K 0 i N j N t N k 0 K R Ring
108 simplrl R Ring U B W B K 0 i N j N t N k 0 K i N
109 simprl R Ring U B W B K 0 i N j N t N k 0 K t N
110 3 eleq2i U B U Base C
111 110 biimpi U B U Base C
112 111 adantr U B W B U Base C
113 112 3ad2ant2 R Ring U B W B K 0 U Base C
114 113 adantr R Ring U B W B K 0 i N j N U Base C
115 114 adantr R Ring U B W B K 0 i N j N t N k 0 K U Base C
116 eqid Base P = Base P
117 2 116 matecl i N t N U Base C i U t Base P
118 108 109 115 117 syl3anc R Ring U B W B K 0 i N j N t N k 0 K i U t Base P
119 41 ad2antll R Ring U B W B K 0 i N j N t N k 0 K k 0
120 eqid coe 1 i U t = coe 1 i U t
121 120 116 1 31 coe1fvalcl i U t Base P k 0 coe 1 i U t k Base R
122 118 119 121 syl2anc R Ring U B W B K 0 i N j N t N k 0 K coe 1 i U t k Base R
123 simplrr R Ring U B W B K 0 i N j N t N k 0 K j N
124 49 adantr R Ring U B W B K 0 i N j N t N k 0 K W B
125 2 116 3 109 123 124 matecld R Ring U B W B K 0 i N j N t N k 0 K t W j Base P
126 51 ad2antll R Ring U B W B K 0 i N j N t N k 0 K K k 0
127 eqid coe 1 t W j = coe 1 t W j
128 127 116 1 31 coe1fvalcl t W j Base P K k 0 coe 1 t W j K k Base R
129 125 126 128 syl2anc R Ring U B W B K 0 i N j N t N k 0 K coe 1 t W j K k Base R
130 31 32 ringcl R Ring coe 1 i U t k Base R coe 1 t W j K k Base R coe 1 i U t k R coe 1 t W j K k Base R
131 107 122 129 130 syl3anc R Ring U B W B K 0 i N j N t N k 0 K coe 1 i U t k R coe 1 t W j K k Base R
132 31 66 37 88 131 gsumcom3fi R Ring U B W B K 0 i N j N R t N R k = 0 K coe 1 i U t k R coe 1 t W j K k = R k = 0 K R t N coe 1 i U t k R coe 1 t W j K k
133 14 adantr R Ring U B W B K 0 i N j N k 0 K i N
134 133 anim1i R Ring U B W B K 0 i N j N k 0 K t N i N t N
135 1 2 3 decpmate R Ring U B k 0 i N t N i U decompPMat k t = coe 1 i U t k
136 43 134 135 syl2an2r R Ring U B W B K 0 i N j N k 0 K t N i U decompPMat k t = coe 1 i U t k
137 simplrr R Ring U B W B K 0 i N j N k 0 K j N
138 137 anim1ci R Ring U B W B K 0 i N j N k 0 K t N t N j N
139 1 2 3 decpmate R Ring W B K k 0 t N j N t W decompPMat K k j = coe 1 t W j K k
140 53 138 139 syl2an2r R Ring U B W B K 0 i N j N k 0 K t N t W decompPMat K k j = coe 1 t W j K k
141 136 140 oveq12d R Ring U B W B K 0 i N j N k 0 K t N i U decompPMat k t R t W decompPMat K k j = coe 1 i U t k R coe 1 t W j K k
142 141 eqcomd R Ring U B W B K 0 i N j N k 0 K t N coe 1 i U t k R coe 1 t W j K k = i U decompPMat k t R t W decompPMat K k j
143 142 mpteq2dva R Ring U B W B K 0 i N j N k 0 K t N coe 1 i U t k R coe 1 t W j K k = t N i U decompPMat k t R t W decompPMat K k j
144 143 oveq2d R Ring U B W B K 0 i N j N k 0 K R t N coe 1 i U t k R coe 1 t W j K k = R t N i U decompPMat k t R t W decompPMat K k j
145 144 mpteq2dva R Ring U B W B K 0 i N j N k 0 K R t N coe 1 i U t k R coe 1 t W j K k = k 0 K R t N i U decompPMat k t R t W decompPMat K k j
146 145 oveq2d R Ring U B W B K 0 i N j N R k = 0 K R t N coe 1 i U t k R coe 1 t W j K k = R k = 0 K R t N i U decompPMat k t R t W decompPMat K k j
147 106 132 146 3eqtrd R Ring U B W B K 0 i N j N i U C W decompPMat K j = R k = 0 K R t N i U decompPMat k t R t W decompPMat K k j
148 17 102 147 3eqtr4rd R Ring U B W B K 0 i N j N i U C W decompPMat K j = i A k = 0 K U decompPMat k A W decompPMat K k j
149 148 ralrimivva R Ring U B W B K 0 i N j N i U C W decompPMat K j = i A k = 0 K U decompPMat k A W decompPMat K k j
150 1 2 pmatring N Fin R Ring C Ring
151 22 150 syl R Ring U B W B C Ring
152 simprl R Ring U B W B U B
153 simprr R Ring U B W B W B
154 eqid C = C
155 3 154 ringcl C Ring U B W B U C W B
156 151 152 153 155 syl3anc R Ring U B W B U C W B
157 156 3adant3 R Ring U B W B K 0 U C W B
158 1 2 3 4 44 decpmatcl R Ring U C W B K 0 U C W decompPMat K Base A
159 157 158 syld3an2 R Ring U B W B K 0 U C W decompPMat K Base A
160 4 matring N Fin R Ring A Ring
161 23 160 syl R Ring U B W B K 0 A Ring
162 ringcmn A Ring A CMnd
163 161 162 syl R Ring U B W B K 0 A CMnd
164 fzfid R Ring U B W B K 0 0 K Fin
165 161 adantr R Ring U B W B K 0 k 0 K A Ring
166 33 adantr R Ring U B W B K 0 k 0 K R Ring
167 simpl2l R Ring U B W B K 0 k 0 K U B
168 41 adantl R Ring U B W B K 0 k 0 K k 0
169 166 167 168 3jca R Ring U B W B K 0 k 0 K R Ring U B k 0
170 169 45 syl R Ring U B W B K 0 k 0 K U decompPMat k Base A
171 simpl2r R Ring U B W B K 0 k 0 K W B
172 51 adantl R Ring U B W B K 0 k 0 K K k 0
173 166 171 172 3jca R Ring U B W B K 0 k 0 K R Ring W B K k 0
174 173 54 syl R Ring U B W B K 0 k 0 K W decompPMat K k Base A
175 eqid A = A
176 44 175 ringcl A Ring U decompPMat k Base A W decompPMat K k Base A U decompPMat k A W decompPMat K k Base A
177 165 170 174 176 syl3anc R Ring U B W B K 0 k 0 K U decompPMat k A W decompPMat K k Base A
178 177 ralrimiva R Ring U B W B K 0 k 0 K U decompPMat k A W decompPMat K k Base A
179 44 163 164 178 gsummptcl R Ring U B W B K 0 A k = 0 K U decompPMat k A W decompPMat K k Base A
180 4 44 eqmat U C W decompPMat K Base A A k = 0 K U decompPMat k A W decompPMat K k Base A U C W decompPMat K = A k = 0 K U decompPMat k A W decompPMat K k i N j N i U C W decompPMat K j = i A k = 0 K U decompPMat k A W decompPMat K k j
181 159 179 180 syl2anc R Ring U B W B K 0 U C W decompPMat K = A k = 0 K U decompPMat k A W decompPMat K k i N j N i U C W decompPMat K j = i A k = 0 K U decompPMat k A W decompPMat K k j
182 149 181 mpbird R Ring U B W B K 0 U C W decompPMat K = A k = 0 K U decompPMat k A W decompPMat K k