| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmatmul.p |
|
| 2 |
|
decpmatmul.c |
|
| 3 |
|
decpmatmul.b |
|
| 4 |
|
simpr |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
1 2
|
pmatring |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpl |
|
| 9 |
8
|
adantl |
|
| 10 |
|
simpr |
|
| 11 |
10
|
adantl |
|
| 12 |
|
eqid |
|
| 13 |
3 12
|
ringcl |
|
| 14 |
7 9 11 13
|
syl3anc |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
simp33 |
|
| 17 |
|
3simpa |
|
| 18 |
17
|
3ad2ant3 |
|
| 19 |
1 2 3
|
decpmate |
|
| 20 |
5 15 16 18 19
|
syl31anc |
|
| 21 |
1
|
ply1ring |
|
| 22 |
|
eqid |
|
| 23 |
2 22
|
matmulr |
|
| 24 |
23
|
eqcomd |
|
| 25 |
21 24
|
sylan2 |
|
| 26 |
25
|
3ad2ant1 |
|
| 27 |
26
|
oveqd |
|
| 28 |
27
|
oveqd |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
21
|
adantl |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
|
simpl |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
2 29
|
matbas2 |
|
| 36 |
3 35
|
eqtr4id |
|
| 37 |
21 36
|
sylan2 |
|
| 38 |
37
|
eleq2d |
|
| 39 |
38
|
biimpcd |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
impcom |
|
| 42 |
41
|
3adant3 |
|
| 43 |
21 35
|
sylan2 |
|
| 44 |
3 43
|
eqtr4id |
|
| 45 |
44
|
eleq2d |
|
| 46 |
45
|
biimpcd |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
impcom |
|
| 49 |
48
|
3adant3 |
|
| 50 |
|
simp31 |
|
| 51 |
|
simp32 |
|
| 52 |
22 29 30 32 34 34 34 42 49 50 51
|
mamufv |
|
| 53 |
28 52
|
eqtrd |
|
| 54 |
53
|
fveq2d |
|
| 55 |
54
|
fveq1d |
|
| 56 |
32
|
adantr |
|
| 57 |
50
|
adantr |
|
| 58 |
|
simpr |
|
| 59 |
|
simpl2l |
|
| 60 |
2 29 3 57 58 59
|
matecld |
|
| 61 |
51
|
adantr |
|
| 62 |
|
simpl2r |
|
| 63 |
2 29 3 58 61 62
|
matecld |
|
| 64 |
29 30
|
ringcl |
|
| 65 |
56 60 63 64
|
syl3anc |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
1 29 5 16 66 34
|
coe1fzgsumd |
|
| 68 |
|
simpl1r |
|
| 69 |
|
eqid |
|
| 70 |
1 30 69 29
|
coe1mul |
|
| 71 |
68 60 63 70
|
syl3anc |
|
| 72 |
|
oveq2 |
|
| 73 |
|
fvoveq1 |
|
| 74 |
73
|
oveq2d |
|
| 75 |
72 74
|
mpteq12dv |
|
| 76 |
75
|
oveq2d |
|
| 77 |
76
|
adantl |
|
| 78 |
16
|
adantr |
|
| 79 |
|
ovexd |
|
| 80 |
71 77 78 79
|
fvmptd |
|
| 81 |
80
|
mpteq2dva |
|
| 82 |
81
|
oveq2d |
|
| 83 |
67 82
|
eqtrd |
|
| 84 |
20 55 83
|
3eqtrd |
|