Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatmul.p |
|
2 |
|
decpmatmul.c |
|
3 |
|
decpmatmul.b |
|
4 |
|
simpr |
|
5 |
4
|
3ad2ant1 |
|
6 |
1 2
|
pmatring |
|
7 |
6
|
adantr |
|
8 |
|
simpl |
|
9 |
8
|
adantl |
|
10 |
|
simpr |
|
11 |
10
|
adantl |
|
12 |
|
eqid |
|
13 |
3 12
|
ringcl |
|
14 |
7 9 11 13
|
syl3anc |
|
15 |
14
|
3adant3 |
|
16 |
|
simp33 |
|
17 |
|
3simpa |
|
18 |
17
|
3ad2ant3 |
|
19 |
1 2 3
|
decpmate |
|
20 |
5 15 16 18 19
|
syl31anc |
|
21 |
1
|
ply1ring |
|
22 |
|
eqid |
|
23 |
2 22
|
matmulr |
|
24 |
23
|
eqcomd |
|
25 |
21 24
|
sylan2 |
|
26 |
25
|
3ad2ant1 |
|
27 |
26
|
oveqd |
|
28 |
27
|
oveqd |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
21
|
adantl |
|
32 |
31
|
3ad2ant1 |
|
33 |
|
simpl |
|
34 |
33
|
3ad2ant1 |
|
35 |
2 29
|
matbas2 |
|
36 |
3 35
|
eqtr4id |
|
37 |
21 36
|
sylan2 |
|
38 |
37
|
eleq2d |
|
39 |
38
|
biimpcd |
|
40 |
39
|
adantr |
|
41 |
40
|
impcom |
|
42 |
41
|
3adant3 |
|
43 |
21 35
|
sylan2 |
|
44 |
3 43
|
eqtr4id |
|
45 |
44
|
eleq2d |
|
46 |
45
|
biimpcd |
|
47 |
46
|
adantl |
|
48 |
47
|
impcom |
|
49 |
48
|
3adant3 |
|
50 |
|
simp31 |
|
51 |
|
simp32 |
|
52 |
22 29 30 32 34 34 34 42 49 50 51
|
mamufv |
|
53 |
28 52
|
eqtrd |
|
54 |
53
|
fveq2d |
|
55 |
54
|
fveq1d |
|
56 |
32
|
adantr |
|
57 |
50
|
adantr |
|
58 |
|
simpr |
|
59 |
|
simpl2l |
|
60 |
2 29 3 57 58 59
|
matecld |
|
61 |
51
|
adantr |
|
62 |
|
simpl2r |
|
63 |
2 29 3 58 61 62
|
matecld |
|
64 |
29 30
|
ringcl |
|
65 |
56 60 63 64
|
syl3anc |
|
66 |
65
|
ralrimiva |
|
67 |
1 29 5 16 66 34
|
coe1fzgsumd |
|
68 |
|
simpl1r |
|
69 |
|
eqid |
|
70 |
1 30 69 29
|
coe1mul |
|
71 |
68 60 63 70
|
syl3anc |
|
72 |
|
oveq2 |
|
73 |
|
fvoveq1 |
|
74 |
73
|
oveq2d |
|
75 |
72 74
|
mpteq12dv |
|
76 |
75
|
oveq2d |
|
77 |
76
|
adantl |
|
78 |
16
|
adantr |
|
79 |
|
ovexd |
|
80 |
71 77 78 79
|
fvmptd |
|
81 |
80
|
mpteq2dva |
|
82 |
81
|
oveq2d |
|
83 |
67 82
|
eqtrd |
|
84 |
20 55 83
|
3eqtrd |
|