Metamath Proof Explorer


Theorem decpmatval0

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019)

Ref Expression
Assertion decpmatval0 M V K 0 M decompPMat K = i dom dom M , j dom dom M coe 1 i M j K

Proof

Step Hyp Ref Expression
1 df-decpmat decompPMat = m V , k 0 i dom dom m , j dom dom m coe 1 i m j k
2 1 a1i M V K 0 decompPMat = m V , k 0 i dom dom m , j dom dom m coe 1 i m j k
3 dmeq m = M dom m = dom M
4 3 adantr m = M k = K dom m = dom M
5 4 dmeqd m = M k = K dom dom m = dom dom M
6 oveq m = M i m j = i M j
7 6 fveq2d m = M coe 1 i m j = coe 1 i M j
8 7 adantr m = M k = K coe 1 i m j = coe 1 i M j
9 simpr m = M k = K k = K
10 8 9 fveq12d m = M k = K coe 1 i m j k = coe 1 i M j K
11 5 5 10 mpoeq123dv m = M k = K i dom dom m , j dom dom m coe 1 i m j k = i dom dom M , j dom dom M coe 1 i M j K
12 11 adantl M V K 0 m = M k = K i dom dom m , j dom dom m coe 1 i m j k = i dom dom M , j dom dom M coe 1 i M j K
13 elex M V M V
14 13 adantr M V K 0 M V
15 simpr M V K 0 K 0
16 dmexg M V dom M V
17 16 dmexd M V dom dom M V
18 17 17 jca M V dom dom M V dom dom M V
19 18 adantr M V K 0 dom dom M V dom dom M V
20 mpoexga dom dom M V dom dom M V i dom dom M , j dom dom M coe 1 i M j K V
21 19 20 syl M V K 0 i dom dom M , j dom dom M coe 1 i M j K V
22 2 12 14 15 21 ovmpod M V K 0 M decompPMat K = i dom dom M , j dom dom M coe 1 i M j K