Metamath Proof Explorer


Theorem decrmac

Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (with carry). (Contributed by AV, 16-Sep-2021)

Ref Expression
Hypotheses decrmanc.a A 0
decrmanc.b B 0
decrmanc.n N 0
decrmanc.m No typesetting found for |- M = ; A B with typecode |-
decrmanc.p P 0
decrmac.f F 0
decrmac.g G 0
decrmac.e A P + G = E
decrmac.2 No typesetting found for |- ( ( B x. P ) + N ) = ; G F with typecode |-
Assertion decrmac Could not format assertion : No typesetting found for |- ( ( M x. P ) + N ) = ; E F with typecode |-

Proof

Step Hyp Ref Expression
1 decrmanc.a A 0
2 decrmanc.b B 0
3 decrmanc.n N 0
4 decrmanc.m Could not format M = ; A B : No typesetting found for |- M = ; A B with typecode |-
5 decrmanc.p P 0
6 decrmac.f F 0
7 decrmac.g G 0
8 decrmac.e A P + G = E
9 decrmac.2 Could not format ( ( B x. P ) + N ) = ; G F : No typesetting found for |- ( ( B x. P ) + N ) = ; G F with typecode |-
10 0nn0 0 0
11 3 dec0h N = 0N
12 7 nn0cni G
13 12 addid2i 0 + G = G
14 13 oveq2i A P + 0 + G = A P + G
15 14 8 eqtri A P + 0 + G = E
16 1 2 10 3 4 11 5 6 7 15 9 decmac Could not format ( ( M x. P ) + N ) = ; E F : No typesetting found for |- ( ( M x. P ) + N ) = ; E F with typecode |-