Metamath Proof Explorer


Theorem decsplit

Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypotheses decsplit0.1 A 0
decsplit.2 B 0
decsplit.3 D 0
decsplit.4 M 0
decsplit.5 M + 1 = N
decsplit.6 A 10 M + B = C
Assertion decsplit Could not format assertion : No typesetting found for |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D with typecode |-

Proof

Step Hyp Ref Expression
1 decsplit0.1 A 0
2 decsplit.2 B 0
3 decsplit.3 D 0
4 decsplit.4 M 0
5 decsplit.5 M + 1 = N
6 decsplit.6 A 10 M + B = C
7 10nn0 10 0
8 7 4 nn0expcli 10 M 0
9 1 8 nn0mulcli A 10 M 0
10 7 9 nn0mulcli 10 A 10 M 0
11 10 nn0cni 10 A 10 M
12 7 2 nn0mulcli 10 B 0
13 12 nn0cni 10 B
14 3 nn0cni D
15 11 13 14 addassi 10 A 10 M + 10 B + D = 10 A 10 M + 10 B + D
16 7 nn0cni 10
17 9 nn0cni A 10 M
18 2 nn0cni B
19 16 17 18 adddii 10 A 10 M + B = 10 A 10 M + 10 B
20 6 oveq2i 10 A 10 M + B = 10 C
21 19 20 eqtr3i 10 A 10 M + 10 B = 10 C
22 21 oveq1i 10 A 10 M + 10 B + D = 10 C + D
23 15 22 eqtr3i 10 A 10 M + 10 B + D = 10 C + D
24 8 nn0cni 10 M
25 24 16 mulcomi 10 M 10 = 10 10 M
26 7 4 5 25 numexpp1 10 N = 10 10 M
27 26 oveq2i A 10 N = A 10 10 M
28 1 nn0cni A
29 28 16 24 mul12i A 10 10 M = 10 A 10 M
30 27 29 eqtri A 10 N = 10 A 10 M
31 dfdec10 Could not format ; B D = ( ( ; 1 0 x. B ) + D ) : No typesetting found for |- ; B D = ( ( ; 1 0 x. B ) + D ) with typecode |-
32 30 31 oveq12i Could not format ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) : No typesetting found for |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) with typecode |-
33 dfdec10 Could not format ; C D = ( ( ; 1 0 x. C ) + D ) : No typesetting found for |- ; C D = ( ( ; 1 0 x. C ) + D ) with typecode |-
34 23 32 33 3eqtr4i Could not format ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D : No typesetting found for |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D with typecode |-