| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr1 |
|
| 2 |
|
simpr2 |
|
| 3 |
|
simp1 |
|
| 4 |
|
simpl |
|
| 5 |
|
disjel |
|
| 6 |
3 4 5
|
syl2an |
|
| 7 |
|
eleq1w |
|
| 8 |
7
|
biimpcd |
|
| 9 |
8
|
necon3bd |
|
| 10 |
9
|
ad2antll |
|
| 11 |
6 10
|
mpd |
|
| 12 |
|
simp2 |
|
| 13 |
|
ssel2 |
|
| 14 |
12 4 13
|
syl2an |
|
| 15 |
|
simp3 |
|
| 16 |
|
simpr |
|
| 17 |
|
ssel2 |
|
| 18 |
15 16 17
|
syl2an |
|
| 19 |
14 18
|
ltlend |
|
| 20 |
19
|
biimprd |
|
| 21 |
11 20
|
mpan2d |
|
| 22 |
21
|
ralimdvva |
|
| 23 |
22
|
3exp |
|
| 24 |
23
|
3imp2 |
|
| 25 |
|
dedekind |
|
| 26 |
1 2 24 25
|
syl3anc |
|
| 27 |
26
|
ex |
|
| 28 |
|
n0 |
|
| 29 |
|
simp1 |
|
| 30 |
|
elinel1 |
|
| 31 |
|
ssel2 |
|
| 32 |
29 30 31
|
syl2an |
|
| 33 |
|
nfv |
|
| 34 |
|
nfv |
|
| 35 |
|
nfra1 |
|
| 36 |
33 34 35
|
nf3an |
|
| 37 |
|
nfv |
|
| 38 |
36 37
|
nfan |
|
| 39 |
|
nfv |
|
| 40 |
|
nfv |
|
| 41 |
|
nfra2w |
|
| 42 |
39 40 41
|
nf3an |
|
| 43 |
|
nfv |
|
| 44 |
42 43
|
nfan |
|
| 45 |
|
rsp |
|
| 46 |
|
elinel2 |
|
| 47 |
|
breq2 |
|
| 48 |
47
|
rspccv |
|
| 49 |
46 48
|
syl5 |
|
| 50 |
45 49
|
syl6 |
|
| 51 |
50
|
com23 |
|
| 52 |
51
|
imp32 |
|
| 53 |
52
|
3ad2antl3 |
|
| 54 |
53
|
adantr |
|
| 55 |
|
simp3 |
|
| 56 |
30
|
adantr |
|
| 57 |
|
breq1 |
|
| 58 |
57
|
ralbidv |
|
| 59 |
58
|
rspccva |
|
| 60 |
55 56 59
|
syl2an |
|
| 61 |
60
|
r19.21bi |
|
| 62 |
54 61
|
jca |
|
| 63 |
62
|
ex |
|
| 64 |
44 63
|
ralrimi |
|
| 65 |
64
|
expr |
|
| 66 |
38 65
|
ralrimi |
|
| 67 |
|
breq2 |
|
| 68 |
|
breq1 |
|
| 69 |
67 68
|
anbi12d |
|
| 70 |
69
|
2ralbidv |
|
| 71 |
70
|
rspcev |
|
| 72 |
32 66 71
|
syl2anc |
|
| 73 |
72
|
expcom |
|
| 74 |
73
|
exlimiv |
|
| 75 |
28 74
|
sylbi |
|
| 76 |
27 75
|
pm2.61ine |
|