Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
|
2 |
|
simpr2 |
|
3 |
|
simp1 |
|
4 |
|
simpl |
|
5 |
|
disjel |
|
6 |
3 4 5
|
syl2an |
|
7 |
|
eleq1w |
|
8 |
7
|
biimpcd |
|
9 |
8
|
necon3bd |
|
10 |
9
|
ad2antll |
|
11 |
6 10
|
mpd |
|
12 |
|
simp2 |
|
13 |
|
ssel2 |
|
14 |
12 4 13
|
syl2an |
|
15 |
|
simp3 |
|
16 |
|
simpr |
|
17 |
|
ssel2 |
|
18 |
15 16 17
|
syl2an |
|
19 |
14 18
|
ltlend |
|
20 |
19
|
biimprd |
|
21 |
11 20
|
mpan2d |
|
22 |
21
|
ralimdvva |
|
23 |
22
|
3exp |
|
24 |
23
|
3imp2 |
|
25 |
|
dedekind |
|
26 |
1 2 24 25
|
syl3anc |
|
27 |
26
|
ex |
|
28 |
|
n0 |
|
29 |
|
simp1 |
|
30 |
|
elinel1 |
|
31 |
|
ssel2 |
|
32 |
29 30 31
|
syl2an |
|
33 |
|
nfv |
|
34 |
|
nfv |
|
35 |
|
nfra1 |
|
36 |
33 34 35
|
nf3an |
|
37 |
|
nfv |
|
38 |
36 37
|
nfan |
|
39 |
|
nfv |
|
40 |
|
nfv |
|
41 |
|
nfra2w |
|
42 |
39 40 41
|
nf3an |
|
43 |
|
nfv |
|
44 |
42 43
|
nfan |
|
45 |
|
rsp |
|
46 |
|
elinel2 |
|
47 |
|
breq2 |
|
48 |
47
|
rspccv |
|
49 |
46 48
|
syl5 |
|
50 |
45 49
|
syl6 |
|
51 |
50
|
com23 |
|
52 |
51
|
imp32 |
|
53 |
52
|
3ad2antl3 |
|
54 |
53
|
adantr |
|
55 |
|
simp3 |
|
56 |
30
|
adantr |
|
57 |
|
breq1 |
|
58 |
57
|
ralbidv |
|
59 |
58
|
rspccva |
|
60 |
55 56 59
|
syl2an |
|
61 |
60
|
r19.21bi |
|
62 |
54 61
|
jca |
|
63 |
62
|
ex |
|
64 |
44 63
|
ralrimi |
|
65 |
64
|
expr |
|
66 |
38 65
|
ralrimi |
|
67 |
|
breq2 |
|
68 |
|
breq1 |
|
69 |
67 68
|
anbi12d |
|
70 |
69
|
2ralbidv |
|
71 |
70
|
rspcev |
|
72 |
32 66 71
|
syl2anc |
|
73 |
72
|
expcom |
|
74 |
73
|
exlimiv |
|
75 |
28 74
|
sylbi |
|
76 |
27 75
|
pm2.61ine |
|