Metamath Proof Explorer


Theorem dedlemb

Description: Lemma for weak deduction theorem. See also ifpfal . (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion dedlemb ¬ φ χ ψ φ χ ¬ φ

Proof

Step Hyp Ref Expression
1 olc χ ¬ φ ψ φ χ ¬ φ
2 1 expcom ¬ φ χ ψ φ χ ¬ φ
3 pm2.21 ¬ φ φ χ
4 3 adantld ¬ φ ψ φ χ
5 simpl χ ¬ φ χ
6 5 a1i ¬ φ χ ¬ φ χ
7 4 6 jaod ¬ φ ψ φ χ ¬ φ χ
8 2 7 impbid ¬ φ χ ψ φ χ ¬ φ